A planar four-bar motion generation model that also includes static structural conditions is formulated and demonstrated in this work. Using this model, planar four-bar motion generators are also synthesized with respect to static torque, deflection constraints, and buckling constraints for a given rigid-body load.

1.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
, 1978,
Kinematics and Mechanism Design
,
Wiley
,
New York
.
2.
Yao
,
J.
, and
Angeles
,
J.
, 2000, “
Computation of All Optimum Dyads in the Approximate Synthesis of Planar Linkages for Rigid-Body Guidance
,”
Mech. Mach. Theory
0094-114X,
35
(
8
), pp.
1065
1078
.
3.
Hong
,
B.
, and
Erdman
,
A. G.
, 2005, “
A Method for Adjustable Planar and Spherical Four-Bar Linkage Synthesis
,”
ASME J. Mech. Des.
0161-8458,
127
(
3
), pp.
456
463
.
4.
Zhou
,
H.
, and
Cheung
,
E. H. M.
, 2004, “
Adjustable Four-Bar Linkages for Multi-Phase Motion Generation
,”
Mech. Mach. Theory
0094-114X,
39
(
3
), pp.
261
279
.
5.
Al-Widyan
,
K.
,
Angeles
,
J.
, and
Jesús Cervantes-Sánchez
,
J.
, 2002, “
The Robust Synthesis of Planar Four-Bar Linkages for Motion Generation
,”
Proceedings of the ASME Design Engineering Technical Conference
, pp.
627
633
.
6.
Zhixing
,
W.
,
Hongying
,
Y.
,
Dewei
,
T.
, and
Jiansheng
,
L.
, 2002, “
Study on Rigid-Body Guidance Synthesis of Planar Linkage
,”
Mech. Mach. Theory
0094-114X,
37
(
7
), pp.
673
684
.
7.
Huang
,
C.
, and
Roth
,
R.
, 1993, “
Dimensional Synthesis of Closed-Loop Linkages to Match Force and Position Specifications
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
194
198
.
8.
Quennouelle
,
C.
, and
Gosselin
,
C.
, 2009, “
A Quasi-Static Model for Planar Compliant Parallel Mechanisms
,”
ASME J. Mech. Rob.
1942-4302,
1
(
2
), p.
021012
.
9.
Venanzi
,
S.
,
Giesen
,
P.
, and
Parenti-Castelli
,
V.
, 2005, “
A Novel Technique for Position Analysis of Planar Complaint Mechanisms
,”
Mech. Mach. Theory
0094-114X,
40
(
11
), pp.
1224
1239
.
10.
Sönmez
,
Ü.
, 2007, “
Introduction to Compliant Long Dwell Mechanism Designs Using Buckling Beams and Arcs
,”
ASME J. Mech. Des.
0161-8458,
129
(
8
), pp.
831
843
.
11.
Wang
,
M. Y.
, 2009, “
A Kinetoelastic Formulation of Compliant Mechanism Optimization
,”
ASME J. Mech. Rob.
1942-4302,
1
(
2
), pp.
88
97
.
12.
Sriram
,
B. R.
, and
Mruthyunjaya
,
T. S.
, 1995, “
Synthesis of Path Generating Flexible-Link Mechanisms
,”
Comput. Struct.
0045-7949,
56
(
4
), pp.
657
666
.
13.
Hac
,
M.
, 1995, “
Dynamics of Flexible Mechanisms With Mutual Dependence Between Rigid Body Motion and Longitudinal Deformation of Links
,”
Mech. Mach. Theory
0094-114X,
30
(
6
), pp.
837
847
.
14.
Yang
,
K.
, and
Park
,
Y.
, 1998, “
Dynamic Stability of a Flexible Four-Bar Mechanism and its Experimental Investigation
,”
Mech. Mach. Theory
0094-114X,
33
(
3
), pp.
307
320
.
15.
Caracciolo
,
R.
, and
Trevisani
,
A.
, 2001, “
Simultaneous Rigid-Body Motion and Vibration Control of a Flexible Four-Bar Linkage
,”
Mech. Mach. Theory
0094-114X,
36
(
2
), pp.
221
243
.
16.
Moaveni
,
S.
, 1999,
Finite Element Analysis Theory and Application With ANSYS
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
17.
Pilkey
,
W. D.
, 1994,
Formulas for Stress, Strain and Structural Matrices
,
Wiley
,
New York
.
18.
Han
,
S. P.
, 1977, “
A Globally Convergent Method for Nonlinear Programming
,”
J. Optim. Theory Appl.
0022-3239,
22
, pp.
297
309
.
19.
Powell
,
M. J. D.
, 1978, “
A Fast Algorithm for Nonlinearly Constrained Optimization Calculations
,”
Numerical Analysis
,
G. A.
Watson
ed.,
Lecture Notes in Mathematics
,
Springer-Verlag
,
Berlin, Germany
, Vol.
630
.
You do not currently have access to this content.