This work focuses on analyzing the effects of the geometric parameters on the singularity-free workspace in order to determine the optimal architecture for the minimal simplified symmetric manipulator Gough–Stewart platform. To this end, the reference orientation is taken as the considered orientation because it is an impartial orientation. In this orientation, the singularity surface becomes a plane coinciding with the base plane. Accordingly, an analytic algorithm is developed to determine the singularity-free workspace. The analysis shows that: (1) for similar isosceles triangle base and platform, the optimal architecture is one for which both the base and the platform are equilateral triangles, and the size ratio between the platform and the base is 12; and (2) if the base and the platform are not similar triangles, the global optimal architecture is difficult to determine. Only an approximate optimal architecture is available.

1.
Gosselin
,
C.
, 1990, “
Determination of the Workspace of 6-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
112
, pp.
331
336
.
2.
Merlet
,
J. -P.
, 1999, “
Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison Between Different Geometries
,”
Int. J. Robot. Res.
0278-3649,
18
(
9
), pp.
902
916
.
3.
Pernkopf
,
F.
, and
Husty
,
M.
, 2006, “
Workspace Analysis of Stewart–Gough-Type Parallel Manipulators
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
220
(
7
), pp.
1019
1032
.
4.
Jiang
,
Q.
, and
Gosselin
,
C.
, 2008, “
Evaluation and Representation of the Orientation Workspace of the Gough-Stewart Platform
,” ASME Paper No. DETC2008-49089.
5.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
6.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Behhabid
,
B.
, 1994,“
Singularity Analysis of Mechanisms And Robots Via a Velocity-Equation Model of the Instantaneous Kinematics
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, San Diego, CA, pp.
986
991
.
7.
Sefrioui
,
J.
, and
Gosselin
,
C.
, 1995, “
On the Quadratic Nature of the Singularity Curves of Planar Three-Degree-of-Freedom Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
30
(
4
), pp.
533
551
.
8.
Collins
,
C. L.
, and
McCarthy
,
J. M.
, 1998, “
The Quartic Singularity Surfaces of Planar Platforms in the Clifford Algebra of the Projective Plane
,”
Mech. Mach. Theory
0094-114X,
33
(
7
), pp.
931
944
.
9.
Fichter
,
E. F.
, 1986, “
A Stewart Platform-Based Manipulator: General Theory and Practical Construction
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
157
182
.
10.
Merlet
,
J. -P.
, 1989, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
0278-3649,
8
(
5
), pp.
45
56
.
11.
Hunt
,
K. H.
, and
McAree
,
P. R.
, 1998, “
The Octahedral Manipulator: Geometry and Mobility
,”
Int. J. Robot. Res.
0278-3649,
17
(
8
), pp.
868
885
.
12.
McAree
,
P. R.
, and
Daniel
,
R. W.
, 1999, “
An Explanation of Never-Special Assembly Changing Motions for 3-3 Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
18
(
6
), pp.
556
574
.
13.
Mayer St-Onge
,
B.
, and
Gosselin
,
C.
, 2000, “
Singularity Analysis and Representation of the General Gough-Stewart Platform
,”
Int. J. Robot. Res.
0278-3649,
19
(
3
), pp.
271
288
.
14.
Li
,
H.
,
Gosselin
,
C.
,
Richard
,
M.
, and
Mayer-St-Onge
,
B.
, 2006, “
Analytic Form of the Six-Dimensional Singularity Locus of the General Gough–Stewart Platform
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
279
287
.
15.
Jiang
,
Q.
, and
Gosselin
,
C.
, 2008, “
Singularity Equations of Gough–Stewart Platforms Using a Minimal Set of Geometric Parameters
,”
ASME J. Mech. Des.
0161-8458,
130
(
11
), p.
112303
.
16.
Jiang
,
Q.
, and
Gosselin
,
C.
, 2008, “
Geometric Optimization of Planar 3-RPR Parallel Mechanisms
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
31
(
4
), pp.
457
468
.
17.
Merlet
,
J. -P.
, 1994, “
Trajectory Verification in the Workspace for Parallel Manipulator
,”
Int. J. Robot. Res.
0278-3649,
13
(
4
), pp.
326
333
.
18.
Bhattacharya
,
S.
,
Hatwal
,
H.
, and
Ghosh
,
A.
, 1998, “
Comparison of an Exact and an Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
33
(
7
), pp.
965
974
.
19.
Sen
,
S.
,
Dasgupta
,
B.
, and
Mallik
,
A. K.
, 2003, “
Variational Approach for Singularity-Free Path-Planning of Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
38
(
11
), pp.
1165
1183
.
20.
Merlet
,
J. -P.
, and
Daney
,
D.
, 2001, “
A Formal-Numerical Approach to Determine the Presence of Singularity Within the Workspace of a Parallel Robot
,”
Proceedings of the International Workshop on Computational Kinematics
, Seoul, May 20–22, pp.
167
176
.
21.
Li
,
H.
,
Gosselin
,
C.
, and
Richard
,
M.
, 2007, “
Determination of the Maximal Singularity-Free Zones in the Six-Dimensional Workspace of the General Gough–Stewart Platform
,”
Mech. Mach. Theory
0094-114X,
42
(
4
), pp.
497
511
.
22.
Jiang
,
Q.
, and
Gosselin
,
C.
, 2008, “
The Maximal Singularity-Free Workspace of the Gough–Stewart Platform for a Given Orientation
,”
ASME J. Mech. Des.
0161-8458,
130
(
11
), p.
112304
.
23.
Jiang
,
Q.
, and
Gosselin
,
C.
, 2008, “
Determination of the Maximal Singularity-Free Orientation Workspace for the Gough-Stewart Platform
,”
Mech. Mach. Theory
0094-114X,
44
, pp.
1281
1293
.
24.
Lee
,
J.
, 2000, “
Investigations of Quality Indices of In-Parallel Platform Manipulators and Development of Web Based Analysis Tool
,” Ph.D. thesis, University of Florida, Gainesville, FL.
25.
Lee
,
J.
,
Duffy
,
J.
, and
Keler
,
J.
, 1999, “
The Optimum Quality Index for the Stability of in Parallel Planar Platform Devices
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
15
20
.
26.
Merlet
,
J. -P.
, 2002,
Parallel Robots
,
Kluwer
,
Dordrecht, Netherlands
.
27.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in C: The Art of Scientific Computing
,
2nd ed.
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.