Pop-up paper mechanisms use techniques similar to the well-studied paper folding techniques of origami. However, pop-ups differ in both the manner of construction and the target uses, warranting further study. This paper outlines the use of planar and spherical kinematics to model commonly used pop-up paper mechanisms. A survey of common joint types is given, including folds, interlocking slots, bends, pivots, sliders, and rotating sliders. Also included is an overview of common one-piece and layered mechanisms, including single-slit, double-slit, V-fold, tent, tube strap, and arch mechanisms. Each mechanism or joint is shown using both a paper representation and either a rigid-body or pseudo-rigid-body representation. In addition, this paper shows that more complex mechanisms may be created by combining simple mechanisms in various ways. The principles presented are applied to the creation of new pop-up joints and mechanisms. The new mechanisms employ both spherical and spatial kinematic chains. Understanding pop-up mechanism kinematics could lead to new applications in deployable structures, packaging, and instruments for minimally invasive surgery.

1.
Carter
,
D. A.
, and
Diaz
,
J.
, 1999,
The Elements of Pop-Up: A Pop-Up Book For Aspiring Paper Engineers
,
Little Simon
,
New York
.
2.
Song
,
G.
, and
Amato
,
N. M.
, 2004, “
A Motion Planning Approach to Folding: From Paper Craft to Protein Folding
,”
IEEE Trans. Rob. Autom.
,
20
(
1
), pp.
60
71
. 1042-296X
3.
Liu
,
H.
, and
Dai
,
J. S.
, 2002, “
Carton Manipulation Analysis Using Configuration Transformation
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
(
C5
), pp.
543
555
.
4.
Dubey
,
V. N.
, and
Dai
,
J. S.
, 2006, “
A Packaging Robot for Complex Cartons
,”
Ind. Robot
0143-991X,
33
(
2
), pp.
82
87
.
5.
Sabuda
,
R.
, 2004,
America the Beautiful
,
Little Simon
,
New York
.
6.
Lee
,
Y. T.
,
Tor
,
S. B.
, and
Soo
,
E. L.
, 1996, “
Mathematical Modelling and Simulation of Pop-Up Books
,”
Comput. Graph.
,
20
(
1
), pp.
21
31
. 0097-8493
7.
Glassner
,
A.
, 2002, “
Interactive Pop-Up Card Design, Part 1
,”
IEEE Comput. Graphics Appl.
,
22
(
1
), pp.
79
86
. 0272-1716
8.
Glassner
,
A.
, 2002, “
Interactive Pop-Up Card Design, Part 2
,”
IEEE Comput. Graphics Appl.
,
22
(
2
), pp.
74
85
. 0272-1716
9.
Balkcom
,
D.
, 2004, “
Robotic Origami Folding
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
10.
Yao
,
W.
, and
Dai
,
J. S.
, 2008, “
Dexterous Manipulation of Origami Cartons With Robotic Fingers Based on the Interactive Configuration Space
,”
ASME J. Mech. Des.
0161-8458,
130
(
2
),
022303
.
11.
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Mitchell
,
J. S.
, 2000, “
Folding Flat Silhouettes and Wrapping Polyhedral Packages: New Results in Computational Origami
,”
Comput. Geom.
0925-7721,
16
(
1
), pp.
3
21
.
12.
Balkcom
,
D. J.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Ochsendorf
,
J. A.
, and
Zhong
,
Y.
, 2006, “
Folding Paper Shopping Bags
,”
Origami4: Proceedings of the 4th International Meeting of Origami Science, Math, and Education (OSME 2006)
, Pasadena, CA, September 8–10, 2006. This paper may be found at: http://erikdemaine.org/papers/PaperBag_OSME2006/
13.
Huffman
,
D. A.
, 1976, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
. 0018-9340
14.
Kergosien
,
Y. L.
,
Gotoda
,
H.
, and
Kunii
,
T.
, 1994, “
Bending and Creasing Virtual Paper
,”
IEEE Comput. Graphics Appl.
0272-1716,
14
(
1
), pp.
40
48
.
15.
Howell
,
L. L.
,
Compliant Mechanisms
,
Wiley
,
New York
.
16.
Dai
,
J. S.
, and
Cannella
,
F.
, 2008, “
Stiffness Characteristics of Carton Folds for Packaging
,”
ASME J. Mech. Des.
0161-8458,
130
(
2
),
022305
.
17.
Tor
,
S. B.
,
Mak
,
K.
, and
Lee
,
Y.
, 2004, “
A Study on the Boundary Conditions of 90° Paper Pop-Up Structures
,” Innovation in Manufacturing Systems and Technology (IMST) Collection, http://hdl.handle.net/1721.1/3921http://hdl.handle.net/1721.1/3921.
18.
Jackson
,
P.
, and
Forrester
,
P.
, 1993,
The Pop-Up Book: Step-By-Step Instructions for Creating Over 100 Original Paper Projects
,
Holt
,
New York
.
19.
Lusk
,
C. P.
, and
Howell
,
L. L.
, 2008, “
Spherical Bistable Micromechanism
,”
ASME J. Mech. Des.
0161-8458,
130
(
4
),
045001
.
20.
Lusk
,
C. P.
, and
Howell
,
L. L.
, 2008, “
Components, Building Blocks, and Demonstrations of Spherical Mechanisms in Microelectromechanical Systems
,”
ASME J. Mech. Des.
0161-8458,
130
(
3
),
034503
.
21.
Norton
,
R. L.
, 2004,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
3rd ed.
,
McGraw-Hill
,
New York
.
22.
Dai
,
J. S.
, and
Jones
,
J. R.
, 1999, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
0161-8458,
121
(
3
), pp.
375
382
.
23.
Dai
,
J. S.
, and
Jones
,
J. R.
, 2005, “
Matrix Representation of Topological Configuration Transformation of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
837
840
.
24.
Birmingham
,
D.
, 2006,
Pop-up! A Manual of Paper Mechanisms
,
Tarquin Publications
,
St. Albans, UK
.
25.
Howell
,
L. L.
, and
Midha
,
A.
, 1995, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
117
, pp.
156
165
.
26.
Hull
,
T.
, 2003, “
Counting Mountain-Valley Assignments for Flat Folds
,”
Ars Comb.
0381-7032,
67
, pp.
175
187
.
27.
Carroll
,
D. W.
,
Magleby
,
S. P.
,
Howell
,
L. L.
,
Todd
,
R. H.
, and
Lusk
,
C. P.
, 2005, “
Simplified Manufacturing Through a Metamorphic Process for Compliant Ortho-Planar Mechanisms
,” American Society of Mechanical Engineers, Design Engineering Division (Publication) DE,
118A
(
1
), pp.
389
399
.
28.
Howell
,
L. L.
, and
Midha
,
A.
, 1996, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
.”
ASME J. Mech. Des.
1050-0472,
118
, pp.
121
125
.
29.
Howell
,
L. L.
, and
Midha
,
A.
, 1994, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
280
290
.
30.
Pieper
,
D. L.
, 1968, “
The Kinematics of Manipulators Under Computer Control
,” Ph.D. thesis, Stanford University, Stanford, CA.
31.
McCarthy
,
J. M.
, 1990,
Introduction to Theoretical Kinematics
,
MIT Press
,
Cambridge, MA
.
You do not currently have access to this content.