Abstract

Packing and routing separately are each challenging NP-hard problems. Therefore, solving the coupled packing and routing problem simultaneously will require disruptive methods to better address pressing-related challenges, such as system volume reduction, interconnect length reduction, ensuring non-intersection, and physics (thermal, hydraulic, or electromagnetic) considerations. Here we present a novel two-stage sequential design framework to perform simultaneous physics-based packing and routing optimization. Stage 1 generates interference-free initial layouts that are fed to stage 2 as starting points to perform continuous physics-based optimization. Three distinct strategies for stage 1 have been introduced recently, (1) the force-directed layout method (FDLM), (2) an extension of the shortest path algorithms (SPAs), and (3) a unique geometric topology (UGT) generation algorithm. In stage 2, a gradient-based topology optimization method is used to simultaneously optimize both component locations and interconnect routing paths. In addition to geometric considerations, this method supports optimization based on system behavior by including physics-based objectives and constraints. The proposed framework is demonstrated using three case studies. First, the layout generation methods developed for stage 1 are compared with respect to system performance metrics obtained from stage 2. Second, a multi-objective optimization problem using the epsilon-constraint method is solved to obtain Pareto optimal solutions. Third, an extension to multi-loop systems is demonstrated. In summary, the design automation framework integrates several elements together as a step toward a more comprehensive solution of 3D packing and routing problems with both geometric and physics considerations.

References

References
1.
Dong
,
H.
,
Guarneri
,
P.
, and
Fadel
,
G.
,
2011
, “
Bi-Level Approach to Vehicle Component Layout With Shape Morphing
,”
ASME J. Mech. Des.
,
133
(
4
), p.
041008
. 10.1115/1.4003916
2.
Schafer
,
M.
, and
Lengauer
,
T.
,
1999
, “
Automated Layout Generation and Wiring Area Estimation for 3D Electronic Modules
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
330
336
. 10.1115/1.1371478
3.
Yano
,
N.
,
Morinaga
,
T.
, and
Saito
,
T.
,
2008
, “
Packing Optimization for Cargo Containers
,”
2008 SICE Annual Conference
,
Tokyo, Japan
,
IEEE
, pp.
3479
3482
.
4.
Bansal
,
N.
,
Lodi
,
A.
, and
Sviridenko
,
M.
,
2005
, “
A Tale of Two Dimensional Bin Packing
,”
46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
,
Pittsburgh, PA
,
IEEE
, pp.
657
666
.
5.
Abdel-Malek
,
K. A.
,
Yeh
,
H. J.
, and
Maropis
,
N.
,
1998
, “
Determining Interference Between Pairs of Solids Defined Constructively in Computer Animation
,”
Engin. Comput.
,
14
(
1
), pp.
48
58
. 10.1007/BF01198974
6.
Panesar
,
A.
,
Brackett
,
D.
,
Ashcroft
,
I.
,
Wildman
,
R.
, and
Hague
,
R.
,
2015
, “
Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111414
. 10.1115/1.4030996
7.
Yin
,
S.
,
Cagan
,
J.
, and
Hodges
,
P.
,
2004
, “
Layout Optimization of Shapeable Components With Extended Pattern Search Applied to Transmission Design
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
188
191
. 10.1115/1.1637663
8.
Cagan
,
J.
,
Degentesh
,
D.
, and
Yin
,
S.
,
1998
, “
A Simulated Annealing-Based Algorithm Using Hierarchical Models for General Three-Dimensional Component Layout
,”
Comput. Aided Des.
,
30
(
10
), pp.
781
790
. 10.1016/S0010-4485(98)00036-0
9.
Jain
,
S.
, and
Gea
,
H. C.
,
1998
, “
Two-Dimensional Packing Problems Using Genetic Algorithms
,”
Engin. Comput.
,
14
(
3
), pp.
206
213
. 10.1007/BF01215974
10.
López-Camacho
,
E.
,
Ochoa
,
G.
,
Terashima-Marín
,
H.
, and
Burke
,
E. K.
,
2013
, “
An Effective Heuristic for the Two-Dimensional Irregular Bin Packing Problem
,”
Ann. Oper. Res.
,
206
(
1
), pp.
241
264
. 10.1007/s10479-013-1341-4
11.
Sridhar
,
R.
,
Chandrasekaran
,
D.
,
Sriramya
,
C.
, and
Page
,
T.
,
2017
, “
Optimization of Heterogeneous Bin Packing Using Adaptive Genetic Algorithm
,”
IOP. Conf. Ser.: Mater. Sci. Eng.
,
183
(
03
), p.
012026
. 10.1088/1757-899X/183/1/012026
12.
Rao
,
R. L.
, and
Iyengar
,
S. S.
,
1994
, “
Bin-Packing by Simulated Annealing
,”
Comp. Math. Appl.
,
27
(
5
), pp.
71
82
.
13.
Koh
,
C.-K.
, and
Madden
,
P. H.
,
2000
, “
Manhattan or Non-Manhattan? A Study of Alternative Vlsi Routing Architectures
,”
Proceedings of the 10th Great Lakes Symposium on VLSI, GLSVLSI ’00, Association for Computing Machinery
,
Chicago, IL
,
Association for Computer Machinery
,
New York
, pp.
47
52
.
14.
Van der Velden
,
C.
,
Bil
,
C.
,
Yu
,
X.
, and
Smith
,
A.
,
2007
, “
An Intelligent System for Automatic Layout Routing in Aerospace Design
,”
Innovat. Syst. Softw. Engin.
,
3
(
2
), pp.
117
128
. 10.1007/s11334-007-0021-4
15.
Park
,
J.-H.
, and
Storch
,
R.
,
2002
, “
Pipe-routing Algorithm Development: Case Study of a Ship Engine Room Design
,”
Expert Syst. Appl. (UK)
,
23
(
3
), pp.
299
309
. 10.1016/S0957-4174(02)00049-0
16.
Guirardello
,
R.
, and
Swaney
,
R. E.
,
2005
, “
Optimization of Process Plant Layout with Pipe Routing
,”
Comput. Chem. Engin.
,
30
(
1
), pp.
99
114
. 10.1016/j.compchemeng.2005.08.009
17.
Liu
,
C.
,
2018
, “
Optimal Design of High-rise Building Wiring Based on Ant Colony Optimization
,”
Cluster Comput.
,
22
(
2
), pp.
1
8
.
18.
Betz
,
V.
, and
Rose
,
J.
,
1997
, “Vpr: a New Packing, Placement and Routing Tool for Fpga Research,”
Field-Programmable Logic and Applications
,
Luk
,
W.
,
Cheung
,
P. Y. K.
,
Glesner
,
M.
, eds.,
Springer Berlin Heidelberg
, pp.
213
222
.
19.
Tisdale
,
J.
,
Kim
,
Z.
, and
Hedrick
,
J. K.
,
2009
, “
Autonomous Uav Path Planning and Estimation
,”
IEEE Robot. Automat. Magaz.
,
16
(
2
), pp.
35
42
. 10.1109/MRA.2009.932529
20.
Jan
,
G. E.
,
Yin Chang
,
K.
, and
Parberry
,
I.
,
2008
, “
Optimal Path Planning for Mobile Robot Navigation
,”
IEEE/ASME Trans. Mechatron.
,
13
(
4
), pp.
451
460
. 10.1109/TMECH.2008.2000822
21.
Landon
,
M. D.
, and
Balling
,
R. J.
,
1994
, “
Optimal Packaging of Complex Parametric Solids According to Mass Property Criteria
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
375
381
. 10.1115/1.2919389
22.
Szykman
,
S.
, and
Cagan
,
J.
,
1997
, “
Constrained Three-Dimensional Component Layout Using Simulated Annealing
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
28
35
. 10.1115/1.2828785
23.
Szykman
,
S.
,
Cagan
,
J.
, and
Weisser
,
P.
,
1998
, “
An Integrated Approach to Optimal Three Dimensional Layout and Routing
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
510
512
. 10.1115/1.2829180
24.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
,
2006
, “
Objective Function Effect Based Pattern Search–Theoretical Framework Inspired by 3D Component Layout
,”
ASME J. Mech. Des.
,
129
(
3
), pp.
243
254
. 10.1115/1.2406095
25.
Yin
,
S.
, and
Cagan
,
J.
,
2000
, “
An Extended Pattern Search Algorithm for Three-Dimensional Component Layout
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
102
108
. 10.1115/1.533550
26.
Ren
,
T.
,
Zhu
,
Z.-L.
,
Dimirovski
,
G.
,
Gao
,
Z.-H.
,
Sun
,
X.-H.
, and
Yu
,
H.
,
2014
, “
A New Pipe Routing Method for Aero-engines Based on Genetic Algorithm
,”
Proc. Inst. Mech. Engin. Part G (J. Aerospace Eng.)
,
228
(
3
), pp.
424
434
. 10.1177/0954410012474134
27.
Qu
,
Y.
,
Jiang
,
D.
,
Gao
,
G.
, and
Huo
,
Y.
,
2016
, “
Pipe Routing Approach for Aircraft Engines Based on Ant Colony Optimization
,”
J. Aerospace Eng.
,
29
(
3
), p.
04015057
. 10.1061/(ASCE)AS.1943-5525.0000543
28.
Gulić
,
M.
, and
Jakobović
,
D.
,
2013
, “
Evolution of Vehicle Routing Problem Heuristics with Genetic Programming
,”
2013 36th International Convention on Information and Communication Technology
,
Opatija, Croatia
,
Electronics and Microelectronics (MIPRO)
, pp.
988
992
.
29.
Peddada
,
S. R. T.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2020
, “
A Novel Two-stage Design Framework for 2D Spatial Packing of Interconnected Components
,”
ASME 2020 International Design Engineering Technical Conferences, No. IDETC2020-22695
,
Online
,
Aug. 17–19 [Virtual]
.
30.
Jessee
,
A.
,
Peddada
,
S. R. T.
,
Lohan
,
D. J.
,
Allison
,
J. T.
, and
James
,
K. A.
,
2020
, “
Simultaneous Packing and Routing Optimization Using Geometric Projection
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111702
. 10.1115/1.4046809
31.
Peddada
,
S. R. T.
,
Herber
,
D. R.
,
Pangborn
,
H. C.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2019
, “
Optimal Flow Control and Single Split Architecture Exploration for Fluid-Based Thermal Management
,”
ASME J. Mech. Des.
,
141
(
8
), p.
083401
. 10.1115/1.4043203
32.
Peddada
,
S. R. T.
,
Rodriguez
,
S. B.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2020
, “
Automated Layout Generation Methods for 2D Spatial Packing
,”
ASME 2020 International Design Engineering Technical Conferences, No. IDETC2020-22627
,
Virtual
,
Aug. 17–19
,
ASME
.
33.
Tutte
,
W. T.
,
1963
, “
How to Draw a Graph
,”
Proc. Lond. Math. Soc.
,
s3–13
(
1
), pp.
743
767
. 10.1112/plms/s3-13.1.743
34.
Kamada
,
T.
, and
Kawai
,
S.
,
1989
, “
An Algorithm for Drawing General Undirected Graphs
,”
Inform. Process. Lett.
,
31
(
1
), pp.
7
15
. 10.1016/0020-0190(89)90102-6
35.
Fruchterman
,
T. M. J.
, and
Reingold
,
E. M.
,
1991
, “
Graph Drawing by Force-Directed Placement
,”
Softw. Practice Exp.
,
21
(
11
), pp.
1129
1164
. 10.1002/spe.4380211102
36.
Chaari
,
I.
,
Koubaa
,
A.
,
Bennaceur
,
H.
,
Ammar
,
A.
,
Alajlan
,
M.
, and
Youssef
,
H.
,
2017
, “
Design and Performance Analysis of Global Path Planning Techniques for Autonomous Mobile Robots in Grid Environments
,”
Int. J. Adv. Robot. Syst.
,
14
(
2
), p.
1729881416663663
. 10.1177/1729881416663663
37.
Alexopoulos
,
C.
, and
Griffin
,
P. M.
,
1992
, “
Path Planning for a Mobile Robot
,”
IEEE Trans. Syst. Man Cyber.
,
22
(
2
), pp.
318
322
. 10.1109/21.148404
38.
Hoffman
,
K. L.
,
Padberg
,
M.
, and
Rinaldi
,
G.
,
2013
,
Traveling Salesman Problem
,
Springer US
,
Boston, MA
, pp.
1573
1578
.
39.
Guruji
,
A. K.
,
Agarwal
,
H.
, and
Parsediya
,
D.
,
2016
, “
Time-Efficient a* Algorithm for Robot Path Planning
,”
Proc. Technol.
,
23
, pp.
144
149
.
3rd International Conference on Innovations in Automation and Mechatronics Engineering 2016, February, ICIAME 2016 05-06
.
40.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Engin.
,
293
, pp.
306
327
. 10.1016/j.cma.2015.05.005
41.
Hughes
,
T. J. R.
,
2000
,
The Finite Element Method
,
Dover Publications
.
You do not currently have access to this content.