Abstract

Data-driven design of mechanical metamaterials is an increasingly popular method to combat costly physical simulations and immense, often intractable, geometrical design spaces. Using a precomputed dataset of unit cells, a multiscale structure can be quickly filled via combinatorial search algorithms, and machine learning models can be trained to accelerate the process. However, the dependence on data induces a unique challenge: an imbalanced dataset containing more of certain shapes or physical properties can be detrimental to the efficacy of data-driven approaches. In answer, we posit that a smaller yet diverse set of unit cells leads to scalable search and unbiased learning. To select such subsets, we propose METASET, a methodology that (1) uses similarity metrics and positive semi-definite kernels to jointly measure the closeness of unit cells in both shape and property spaces and (2) incorporates Determinantal Point Processes for efficient subset selection. Moreover, METASET allows the trade-off between shape and property diversity so that subsets can be tuned for various applications. Through the design of 2D metamaterials with target displacement profiles, we demonstrate that smaller, diverse subsets can indeed improve the search process as well as structural performance. By eliminating inherent overlaps in a dataset of 3D unit cells created with symmetry rules, we also illustrate that our flexible method can distill unique subsets regardless of the metric employed. Our diverse subsets are provided publicly for use by any designer.

References

References
1.
Schumacher
,
C.
,
Bickel
,
B.
,
Rys
,
J.
,
Marschner
,
S.
,
Daraio
,
C.
, and
Gross
,
M.
,
2015
, “
Microstructures to Control Elasticity in 3d Printing
,”
ACM Trans. Graph. (TOG)
,
34
(
4
), pp.
1
13
. 10.1145/2766926
2.
Maskery
,
I.
,
Aremu
,
A.
,
Parry
,
L.
,
Wildman
,
R.
,
Tuck
,
C.
, and
Ashcroft
,
I.
,
2018
, “
Effective Design and Simulation of Surface-based Lattice Structures Featuring Volume Fraction and Cell Type Grading
,”
Mater. Design
,
155
, pp.
220
232
. 10.1016/j.matdes.2018.05.058
3.
Choi
,
H.
,
Baek
,
A. M. C.
, and
Kim
,
N.
,
2019
, “
Design of Non-periodic Lattice Structures by Allocating Pre-Optimized Building Blocks
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol.
1
, American Society of Mechanical Engineers.
4.
Vogiatzis
,
P.
,
Ma
,
M.
,
Chen
,
S.
, and
Gu
,
X. D.
,
2018
, “
Computational Design and Additive Manufacturing of Periodic Conformal Metasurfaces by Synthesizing Topology Optimization with Conformal Mapping
,”
Comput. Methods Appl. Mech. Engin.
,
328
, pp.
477
497
. 10.1016/j.cma.2017.09.012
5.
Deng
,
J.
, and
Chen
,
W.
,
2017
, “
Concurrent Topology Optimization of Multiscale Structures with Multiple Porous Materials Under Random Field Loading Uncertainty
,”
Struct. Multidiscipl. Optim.
,
56
(
1
), pp.
1
19
. 10.1007/s00158-017-1689-1
6.
Du
,
Z.
,
Zhou
,
X.-Y.
,
Picelli
,
R.
, and
Kim
,
H. A.
,
2018
, “
Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111417
. 10.1115/1.4041176
7.
Liu
,
H.
,
Zong
,
H.
,
Tian
,
Y.
,
Ma
,
Q.
, and
Wang
,
M. Y.
,
2019
, “
A Novel Subdomain Level Set Method for Structural Topology Optimization and Its Application in Graded Cellular Structure Design
,”
Struct. Multidiscipl. Optim.
,
60
(
6
), pp.
2221
2247
. 10.1007/s00158-019-02318-3
8.
Coulais
,
C.
,
Teomy
,
E.
,
de Reus
,
K.
,
Shokef
,
Y.
, and
van Hecke
,
M.
,
2016
, “
Combinatorial Design of Textured Mechanical Metamaterials
,”
Nature
,
535
(
7613
), pp.
529
532
. 10.1038/nature18960
9.
Zhu
,
B.
,
Skouras
,
M.
,
Chen
,
D.
, and
Matusik
,
W.
,
2017
, “
Two-scale Topology Optimization With Microstructures
,”
ACM Trans. Graph.
,
36
(
4
), p.
1
. 10.1145/3095815
10.
Wang
,
L.
,
Chan
,
Y.-C.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Data-driven Metamaterial Design with Laplace-beltrami Spectrum As ‘shape-DNA’
,”
Struct. Multidiscipl. Optim.
,
61
(
6
), pp.
2613
2628
. 10.1007/s00158-020-02523-5
11.
Bostanabad
,
R.
,
Chan
,
Y.-C.
,
Wang
,
L.
,
Zhu
,
P.
, and
Chen
,
W.
,
2019
, “
Globally Approximate Gaussian Processes for Big Data With Application to Data-driven Metamaterials Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111402
. 10.1115/1.4044257
12.
White
,
D. A.
,
Arrighi
,
W. J.
,
Kudo
,
J.
, and
Watts
,
S. E.
,
2019
, “
Multiscale Topology Optimization Using Neural Network Surrogate Models
,”
Comput. Methods Appl. Mech. Engin.
,
346
, pp.
1118
1135
. 10.1016/j.cma.2018.09.007
13.
Chen
,
D.
,
Levin
,
D. I. W.
,
Sueda
,
S.
, and
Matusik
,
W.
,
2015
, “
Data-driven Finite Elements for Geometry and Material Design
,”
ACM Trans. Graph. (TOG)
,
34
(
4
), pp.
1
10
. 10.1145/2766889
14.
Ma
,
W.
,
Cheng
,
F.
,
Xu
,
Y.
,
Wen
,
Q.
, and
Liu
,
Y.
,
2019
, “
Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model with Semi-supervised Learning Strategy
,”
Adv. Mater.
,
31
(
35
), p.
1901111
. 10.1002/adma.201901111
15.
Liu
,
Z.
,
Zhu
,
D.
,
Rodrigues
,
S. P.
,
Lee
,
K.-T.
, and
Cai
,
W.
,
2018
, “
Generative Model for the Inverse Design of Metasurfaces
,”
Nano. Lett.
,
18
(
10
), pp.
6570
6576
. 10.1021/acs.nanolett.8b03171
16.
Haixiang
,
G.
,
Yijing
,
L.
,
Shang
,
J.
,
Mingyun
,
G.
,
Yuanyue
,
H.
, and
Bing
,
G.
,
2017
, “
Learning From Class-imbalanced Data: Review of Methods and Applications
,”
Expert Syst. Appl.
,
73
, pp.
220
239
. 10.1016/j.eswa.2016.12.035
17.
Panetta
,
J.
,
Zhou
,
Q.
,
Malomo
,
L.
,
Pietroni
,
N.
,
Cignoni
,
P.
, and
Zorin
,
D.
,
2015
, “
Elastic Textures for Additive Fabrication
,”
ACM Trans. Graph. (TOG)
,
34
(
4
), pp.
1
12
. 10.1145/2766937
18.
Branco
,
P.
,
Torgo
,
L.
, and
Ribeiro
,
R. P.
,
2016
, “
A Survey of Predictive Modeling on Imbalanced Domains
,”
ACM Comput. Surveys
,
49
(
2
), pp.
1
50
. 10.1145/2907070
19.
Coombs
,
C. H.
, and
Avrunin
,
G. S.
,
1977
, “
Single-peaked Functions and the Theory of Preference.
,”
Psychol. Rev.
,
84
(
2
), pp.
216
230
. 10.1037/0033-295X.84.2.216
20.
Ahmed
,
F.
,
Fuge
,
M.
, and
Gorbunov
,
L. D.
,
2016
, “
Discovering Diverse, High Quality Design Ideas From a Large Corpus
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, American Society of Mechanical Engineers Digital Collection.
21.
Ahmed
,
F.
, and
Fuge
,
M.
,
2017
, “
Ranking Ideas for Diversity and Quality
,”
ASME J. Mech. Des.
,
140
(
1
), p.
011101
. 10.1115/1.4038070
22.
Kulesza
,
A.
, and
Taskar
,
B.
,
2012
, “
Determinantal Point Processes for Machine Learning
,”
Found. Trends® Mach. Learn.
,
5
(
2–3
), pp.
123
286
. 10.1561/2200000044
23.
de Aguiar
,
P. F.
,
Bourguignon
,
B.
,
Khots
,
M.
,
Massart
,
D.
, and
Phan-Than-Luu
,
R.
,
1995
, “
D-optimal Designs
,”
Chemom. Intell. Lab. Syst.
,
30
(
2
), pp.
199
210
. 10.1016/0169-7439(94)00076-X
24.
Li
,
D.
,
Dai
,
N.
,
Tang
,
Y.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2019
, “
Design and Optimization of Graded Cellular Structures with Triply Periodic Level Surface-Based Topological Shapes
,”
ASME J. Mech. Des.
,
141
(
7
), p.
071402
. 10.1115/1.4042617
25.
Bustos
,
B.
,
Keim
,
D. A.
,
Saupe
,
D.
,
Schreck
,
T.
, and
Vranić
,
D. V.
,
2005
, “
Feature-based Similarity Search in 3d Object Databases
,”
ACM Comput. Surveys (CSUR)
,
37
(
4
), pp.
345
387
. 10.1145/1118890.1118893
26.
Rostami
,
R.
,
Bashiri
,
F. S.
,
Rostami
,
B.
, and
Yu
,
Z.
,
2018
, “
A Survey on Data-driven 3d Shape Descriptors
,”
Comput. Graph. Forum
,
38
(
1
), pp.
356
393
. 10.1111/cgf.13536
27.
Achlioptas
,
P.
,
Diamanti
,
O.
,
Mitliagkas
,
I.
, and
Guibas
,
L.
,
2018
, “
Learning Representations and Generative Models for 3D Point Clouds
”. In
Proceedings of the 35th International Conference on Machine Learning
,
J.
Dy
and
A.
Krause
, eds., Vol.
80
of Proceedings of Machine Learning Research,
PMLR
, pp.
40
49
.
28.
Sharon
,
E.
, and
Mumford
,
D.
,
2006
, “
2d-shape Analysis Using Conformal Mapping
,”
Inter. J. Comput. Vision
,
70
(
1
), pp.
55
75
. 10.1007/s11263-006-6121-z
29.
Su
,
Z.
,
Wang
,
Y.
,
Shi
,
R.
,
Zeng
,
W.
,
Sun
,
J.
,
Luo
,
F.
, and
Gu
,
X.
,
2015
, “
Optimal Mass Transport for Shape Matching and Comparison
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
37
(
11
), pp.
2246
2259
. 10.1109/TPAMI.2015.2408346
30.
Vamvakas
,
G.
,
Gatos
,
B.
, and
Perantonis
,
S. J.
,
2010
, “
Handwritten Character Recognition Through Two-stage Foreground Sub-sampling
,”
Pattern Recogn.
,
43
(
8
), pp.
2807
2816
. 10.1016/j.patcog.2010.02.018
31.
Das
,
N.
,
Reddy
,
J. M.
,
Sarkar
,
R.
,
Basu
,
S.
,
Kundu
,
M.
,
Nasipuri
,
M.
, and
Basu
,
D. K.
,
2012
, “
A Statistical–topological Feature Combination for Recognition of Handwritten Numerals
,”
Appl. Soft. Comput.
,
12
(
8
), pp.
2486
2495
. 10.1016/j.asoc.2012.03.039
32.
Sarkhel
,
R.
,
Das
,
N.
,
Das
,
A.
,
Kundu
,
M.
, and
Nasipuri
,
M.
,
2017
, “
A Multi-scale Deep Quad Tree Based Feature Extraction Method for the Recognition of Isolated Handwritten Characters of Popular Indic Scripts
,”
Pattern Recogn.
,
71
, pp.
78
93
. 10.1016/j.patcog.2017.05.022
33.
Kobbelt
,
L.
, and
Botsch
,
M.
,
2004
, “
A Survey of Point-Based Techniques in Computer Graphics
,”
Comput. Graph.
,
28
(
6
), pp.
801
814
. 10.1016/j.cag.2004.08.009
34.
Huttenlocher
,
D.
,
Klanderman
,
G.
, and
Rucklidge
,
W.
,
1993
, “
Comparing Images Using the Hausdorff Distance
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
15
(
9
), pp.
850
863
. 10.1109/34.232073
35.
Fan
,
H.
,
Su
,
H.
, and
Guibas
,
L. J.
,
2017
, “
A Point Set Generation Network for 3d Object Reconstruction From a Single Image
,”
IEEE 2017 Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
.
36.
Guo
,
Y.
,
Wang
,
H.
,
Hu
,
Q.
,
Liu
,
H.
,
Liu
,
L.
, and
Bennamoun
,
M.
,
2020
, “
Deep Learning for 3d Point Clouds: A Survey
,”
IEEE Transactions on Pattern Analysis and Machine Intelligence
, pp.
1
1
. 10.1109/tpami.2020.3005434
37.
Kulesza
,
A.
, and
Taskar
,
B.
,
2011
, “
k-dpps: Fixed-size Determinantal Point Processes
,”
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
,
Bellevue, WA
,
June 28–July 2
, pp.
1193
1200
38.
Borodin
,
A.
,
2009
, “
Determinantal Point Processes
,”
The Oxford Handbook of Random Matrix Theory
,
Oxford University Press
. 10.1093/oxfordhb/9780198744191.013.11
39.
Feige
,
U.
,
Mirrokni
,
V. S.
, and
Vondrak
,
J.
,
2011
, “
Maximizing Non-monotone Submodular Functions
,”
SIAM J. Comput.
,
40
(
4
), pp.
1133
1153
. 10.1137/090779346
40.
Nemhauser
,
G. L.
,
Wolsey
,
L. A.
, and
Fisher
,
M. L.
,
1978
, “
An Analysis of Approximations for Maximizing Submodular Set Functions–i
,”
Math. Program.
,
14
(
1
), pp.
265
294
. 10.1007/BF01588971
41.
Mirzaali
,
M. J.
,
Janbaz
,
S.
,
Strano
,
M.
,
Vergani
,
L.
, and
Zadpoor
,
A. A.
,
2018
, “
Shape-Matching Soft Mechanical Metamaterials
,”
Sci. Rep.
,
8
(
1
), pp.
1
7
. 10.1038/s41598-018-19381-3
42.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization: Theory, Methods and Applications
,
Springer Science & Business Media
,
Berlin
.
43.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Inter. J. Numer. Methods Engin.
,
24
(
2
), pp.
359
373
. 10.1002/nme.1620240207
44.
Deepak
,
S. R.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G.
,
2009
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
. 10.1115/1.2959094
45.
Komodakis
,
N.
,
Paragios
,
N.
, and
Tziritas
,
G.
,
2010
, “
Mrf Energy Minimization and Beyond Via Dual Decomposition
,”
IEEE Trans. Pattern Anal. Machine Intell.
,
30
(
3
), pp.
531
552
. 10.1109/tpami.2010.108
46.
Wohlgemuth
,
M.
,
Yufa
,
N.
,
Hoffman
,
J.
, and
Thomas
,
E. L.
,
2001
, “
Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries
,”
Macromolecules
,
34
(
17
), pp.
6083
6089
. 10.1021/ma0019499
47.
Abueidda
,
D. W.
,
Jasiuk
,
I.
, and
Sobh
,
N. A.
,
2018
, “
Acoustic Band Gaps and Elastic Stiffness of PMMA Cellular Solids Based on Triply Periodic Minimal Surfaces
,”
Mater. Des.
,
145
, pp.
20
27
. 10.1016/j.matdes.2018.02.032
48.
Shmueli
,
U.
,
2010
,
International Tables for Crystallography: Volume B, Reciprocal Space
,
International Union of Crystallography
,
England
, pp.
114
174
. 10.1107/97809553602060000108
49.
Vogiatzis
,
P.
,
Chen
,
S.
, and
Zhou
,
C.
,
2017
, “
An Open Source Framework for Integrated Additive Manufacturing and Level-Set-Based Topology Optimization
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
4
), p.
041012
. 10.1115/1.4037738
50.
Kleiman
,
Y.
,
2017
, “
Github Repository, Sample_mesh
.” https://github.com/hexygen/sample_mesh.
51.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2018
, “
A 149 Line Homogenization Code for Three-dimensional Cellular Materials Written in Matlab
,”
ASME J. Eng. Mater. Technol.
,
141
(
1
), p.
011005
. 10.1115/1.4040555
You do not currently have access to this content.