Abstract

Functionally graded materials (FGMs) exhibit spatial gradients in properties that can be exploited to satisfy multiple conflicting performance objectives in the same part. Compositionally graded alloys are a subclass of FGMs that have received increased attention with the development of metal additive manufacturing. However, the formation of secondary phases can often lead to cracks or deleterious properties in these materials. In prior work, a computational methodology was presented that can design compositional gradients to avoid these phases at any temperature without the need to visualize phase diagrams (Kirk et al., 2018, “Computational Design of Gradient Paths in Additively Manufactured Functionally Graded Materials,” ASME J. Mech. Des., 140(11), p. 111410). The methodology optimizes gradient paths through composition space for a specified cost function, but prior work only considered minimizing path length or maximizing the distance from undesirable phases. In this work, a new cost function is presented to produce compositional paths with optimal property gradients. Specifically, monotonicity is presented as the optimal quality of a pathwise property gradient because monotonic property gradients can be transformed to nearly any form on the part by controlling deposition rate. The proposed cost function uses a metric for non-monotonicity to find the shortest path with monotonic properties and is shown to be compatible with optimal path planners. A synthetic case study examines the effect of a cost function parameter on the trade-off between length and monotonicity. The cost function is also demonstrated in the Fe-Co-Cr system to find a compositional path with monotonic gradients in coefficient of thermal expansion (CTE). The deposition of the path on a hypothetical part is then planned subject to a maximum deposition rate and CTE gradient. Future work is proposed to extend the framework to optimize multiple properties at once and to incorporate multi-material topology optimization (MMTO) techniques into a complete design methodology for functionally graded metal parts.

References

References
1.
Koizumi
,
M.
, and
Niino
,
M.
,
1995
, “
Overview of FGM Research in Japan
,”
MRS Bull.
,
20
(
1
), pp.
19
21
. 10.1557/S0883769400048867
2.
Markworth
,
A. J.
,
Ramesh
,
K. S.
, and
Parks
,
W. P.
,
1995
, “
Modelling Studies Applied to Functionally Graded Materials
,”
J. Mater. Sci.
,
30
(
9
), pp.
2183
2193
. 10.1007/BF01184560
3.
Oxman
,
N.
,
2011
, “
Variable Property Rapid Prototyping
,”
Virtual Phys. Prototyping
,
6
(
1
), pp.
3
31
. 10.1080/17452759.2011.558588
4.
Vaezi
,
M.
,
Chianrabutra
,
S.
,
Mellor
,
B.
, and
Yang
,
S.
,
2013
, “
Multiple Material Additive Manufacturing—Part 1: A Review
,”
Virtual Phys. Prototyping
,
8
(
1
), pp.
19
50
. 10.1080/17452759.2013.778175
5.
Loh
,
G. H.
,
Pei
,
E.
,
Harrison
,
D.
, and
Monzón
,
M. D.
,
2018
, “
An Overview of Functionally Graded Additive Manufacturing
,”
Addit. Manuf.
,
23
, pp.
34
44
. 10.1016/j.addma.2018.06.023
6.
Hofmann
,
D. C.
,
Kolodziejska
,
J.
,
Roberts
,
S.
,
Otis
,
R.
,
Dillon
,
R. P.
,
Suh
,
J. -O.
,
Liu
,
Z. -K.
, and
Borgonia
,
J. -P.
,
2014
, “
Compositionally Graded Metals: A New Frontier of Additive Manufacturing
,”
J. Mater. Res.
,
29
(
17
), pp.
1899
1910
. 10.1557/jmr.2014.208
7.
Tammas-Williams
,
S.
, and
Todd
,
I.
,
2017
, “
Design for Additive Manufacturing With Site-specific Properties in Metals and Alloys
,”
Scr. Mater.
,
135
, pp.
105
110
. 10.1016/j.scriptamat.2016.10.030
8.
Yan
,
L.
,
Chen
,
Y.
, and
Liou
,
F.
,
2020
, “
Additive Manufacturing of Functionally Graded Metallic Materials Using Laser Metal Deposition
,”
Addit. Manuf.
,
31
, p.
100901
. 10.1016/j.addma.2019.100901
9.
Reichardt
,
A.
,
Shapiro
,
A. A.
,
Otis
,
R.
,
Dillon
,
R. P.
,
Borgonia
,
J. P.
,
McEnerney
,
B. W.
,
Hosemann
,
P.
, and
Beese
,
A. M.
,
2020
, “
Advances in Additive Manufacturing of Metal-Based Functionally Graded Materials
,”
Int. Mater. Rev.
, pp.
1
29
. 10.1080/09506608.2019.1709354
10.
Schwendner
,
K. I.
,
Banerjee
,
R.
,
Collins
,
P. C.
,
Brice
,
C. A.
, and
Fraser
,
H. L.
,
2001
, “
Direct Laser Deposition of Alloys From Elemental Powder Blends
,”
Scr. Mater.
,
45
(
10
), pp.
1123
1129
. 10.1016/S1359-6462(01)01107-1
11.
Hofmann
,
D. C.
,
Roberts
,
S.
,
Otis
,
R.
,
Kolodziejska
,
J.
,
Dillon
,
R. P.
,
Suh
,
J.-o.
,
Shapiro
,
A. A.
,
Liu
,
Z. -K.
, and
Borgonia
,
J. -P.
,
2014
, “
Developing Gradient Metal Alloys Through Radial Deposition Additive Manufacturing
,”
Sci. Rep.
,
4
, p.
5357
. 10.1038/srep05357
12.
Carroll
,
B. E.
,
Otis
,
R. A.
,
Borgonia
,
J. P.
,
Suh
,
J.-o.
,
Dillon
,
R. P.
,
Shapiro
,
A. A.
,
Hofmann
,
D. C.
,
Liu
,
Z. -K.
, and
Beese
,
A. M.
,
2016
, “
Functionally Graded Material of 304L Stainless Steel and Inconel 625 Fabricated by Directed Energy Deposition: Characterization and Thermodynamic Modeling
,”
Acta. Mater.
,
108
, pp.
46
54
. 10.1016/j.actamat.2016.02.019
13.
Chen
,
B.
,
Su
,
Y.
,
Xie
,
Z.
,
Tan
,
C.
, and
Feng
,
J.
,
2020
, “
Development and Characterization of 316L/Inconel625 Functionally Graded Material Fabricated by Laser Direct Metal Deposition
,”
Optics Laser Technol.
,
123
, p.
105916
. 10.1016/j.optlastec.2019.105916
14.
Reichardt
,
A.
,
Dillon
,
R. P.
,
Borgonia
,
J. P.
,
Shapiro
,
A. A.
,
McEnerney
,
B. W.
,
Momose
,
T.
, and
Hosemann
,
P.
,
2016
, “
Development and Characterization of Ti-6Al-4V to 304L Stainless Steel Gradient Components Fabricated With Laser Deposition Additive Manufacturing
,”
Mater. Des.
,
104
, pp.
404
413
. 10.1016/j.matdes.2016.05.016
15.
Bobbio
,
L. D.
,
Otis
,
R. A.
,
Borgonia
,
J. P.
,
Dillon
,
R. P.
,
Shapiro
,
A. A.
,
Liu
,
Z. -K.
, and
Beese
,
A. M.
,
2017
, “
Additive Manufacturing of a Functionally Graded Material From Ti-6Al-4V to Invar: Experimental Characterization and Thermodynamic Calculations
,”
Acta. Mater.
,
127
, pp.
133
142
. 10.1016/j.actamat.2016.12.070
16.
Meng
,
W.
,
Xiaohui
,
Y.
,
Zhang
,
W.
,
Junfei
,
F.
,
Lijie
,
G.
,
Qunshuang
,
M.
, and
Bing
,
C.
,
2020
, “
Additive Manufacturing of a Functionally Graded Material From Inconel625 to Ti6Al4V by Laser Synchronous Preheating
,”
J. Mater. Process. Technol.
,
275
, p.
116368
. 10.1016/j.jmatprotec.2019.116368
17.
Moustafa
,
A. R.
,
Durga
,
A.
,
Lindwall
,
G.
, and
Cordero
,
Z. C.
,
2020
, “
Scheil Ternary Projection (STeP) Diagrams for Designing Additively Manufactured Functionally Graded Metals
,”
Addit. Manuf.
,
32
, p.
101008
. 10.1016/j.addma.2019.101008
18.
Bocklund
,
B.
,
Bobbio
,
L. D.
,
Otis
,
R. A.
,
Beese
,
A. M.
, and
Liu
,
Z.-K.
,
2020
, “
Experimental Validation of Scheil-Gulliver Simulations for Gradient Path Planning in Additively Manufactured Functionally Graded Materials
,”
Materialia
,
11
, p.
100689
. 10.1016/j.mtla.2020.100689
19.
Kirk
,
T.
,
Galvan
,
E.
,
Malak
,
R.
, and
Arroyave
,
R.
,
2018
, “
Computational Design of Gradient Paths in Additively Manufactured Functionally Graded Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111410
. 10.1115/1.4040816
20.
Eliseeva
,
O. V.
,
Kirk
,
T.
,
Samimi
,
P.
,
Malak
,
R.
,
Arróyave
,
R.
,
Elwany
,
A.
, and
Karaman
,
I.
,
2019
, “
Functionally Graded Materials Through Robotics-inspired Path Planning
,”
Mater. Des.
,
182
, p.
107975
. 10.1016/j.matdes.2019.107975
21.
Davydov
,
Y.
, and
Zitikis
,
R.
,
2017
, “
Quantifying Non-monotonicity of Functions and the Lack of Positivity in Signed Measures
,”
Modern Stochastics: Theory and Applications
,
4
(
3
), pp.
219
231
.
arXiv: 1705.02742
. 10.15559/17-VMSTA84
22.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2011
, “
Sampling-Based Algorithms for Optimal Motion Planning
,”
Int. J. Rob. Res.
,
30
(
7
), pp.
846
894
. 10.1177/0278364911406761
23.
Adiyatov
,
O.
, and
Varol
,
H.
,
2013
, “
Rapidly-Exploring Random Tree Based Memory Efficient Motion Planning
,”
2013 IEEE International Conference on Mechatronics and Automation (ICMA)
,
Takamatsu, Japan
, IEEE, pp.
354
359
.
24.
Kaufman
,
L.
, and
Bernstein
,
H.
,
1970
,
Computer Calculation of Phase Diagrams. With special Reference to Refractory Metals
,
Academic Press, Inc.
,
New York
.
25.
Kaufman
,
L.
, and
Agren
,
J.
,
2014
, “
CALPHAD, First and Second Generation–Birth of the Materials Genome
,”
Scr. Mater.
,
70
, pp.
3
6
. 10.1016/j.scriptamat.2012.12.003
26.
Andersson
,
J.-O.
,
Helander
,
T.
,
Höglund
,
L.
,
Shi
,
P.
, and
Sundman
,
B.
,
2002
, “
Thermo-Calc & DICTRA, Computational Tools for Materials Science
,”
Calphad
,
26
(
2
), pp.
273
312
. 10.1016/S0364-5916(02)00037-8
27.
Mao
,
H.
,
Chen
,
H.-L.
, and
Chen
,
Q.
,
2017
, “
TCHEA1: A Thermodynamic Database Not Limited for “High Entropy” Alloys
,”
J. Phase. Equilib. Diffus.
,
38
(
4
), pp.
353
368
. 10.1007/s11669-017-0570-7
28.
Hwang
,
Y. K.
, and
Ahuja
,
N.
,
1992
, “
Gross Motion Planning—A Survey
,”
ACM Comput. Surveys (CSUR)
,
24
(
3
), pp.
219
291
. 10.1145/136035.136037
29.
Raja
,
P.
, and
Pugazhenthi
,
S.
,
2012
, “
Optimal Path Planning of Mobile Robots: A Review
,”
Int. J. Phys. Sci.
,
7
(
9
), pp.
1314
1320
. 10.5897/IJPS11.1745
30.
Elbanhawi
,
M.
, and
Simic
,
M.
,
2014
, “
Sampling-based Robot Motion Planning: A Review
,”
IEEE Access
,
2
, pp.
56
77
. 10.1109/ACCESS.2014.2302442
31.
Mac
,
T. T.
,
Copot
,
C.
,
Tran
,
D. T.
, and
De Keyser
,
R.
,
2016
, “
Heuristic Approaches in Robot Path Planning: A Survey
,”
Rob. Auto. Syst.
,
86
, pp.
13
28
. 10.1016/j.robot.2016.08.001
32.
Gulyaev
,
A. P.
, and
Kupalova
,
I. K.
,
1970
, “
Effect of Cobalt on the Structure and Properties of High-Speed Steels
,”
Met. Sci. Heat. Treat.
,
12
(
8
), pp.
666
671
. 10.1007/BF00654791
33.
Kereiakes
,
D. J.
,
Cox
,
D. A.
,
Hermiller
,
J. B.
,
Midei
,
M. G.
,
Bachinsky
,
W. B.
,
Nukta
,
E. D.
,
Leon
,
M. B.
,
Fink
,
S.
,
Marin
,
L.
, and
Lansky
,
A. J.
,
2003
, “
Usefulness of a Cobalt Chromium Coronary Stent Alloy
,”
Am. J. Cardiology
,
92
(
4
), pp.
463
466
. 10.1016/S0002-9149(03)00669-6
34.
Hou
,
J.
,
Guo
,
J.
,
Zhou
,
L.
, and
Ye
,
H.
,
2006
, “
Sigma Phase Formation and Its Effect on Mechanical Properties in the Corrosion-Resistant Superalloy K44
,”
Z. Metallkunde
,
97
(
2
), pp.
174
181
. 10.3139/146.101222
35.
Hsieh
,
C.-C.
, and
Wu
,
W.
,
2012
, “
Overview of Intermetallic Sigma Phase Precipitation in Stainless Steels
,”
ISRN Metallurgy
,
2012
. 10.5402/2012/732471
36.
Xia
,
Q.
, and
Wang
,
M. Y.
,
2008
, “
Simultaneous Optimization of the Material Properties and the Topology of Functionally Graded Structures
,”
Comput.-Aided Design
,
40
(
6
), pp.
660
675
. 10.1016/j.cad.2008.01.014
37.
Hiller
,
J. D.
, and
Lipson
,
H.
,
2009
, “
Multi Material Topological Optimization of Structures and Mechanisms
,”
Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO ’09
,
ACM
,
Montreal, Quebec, Canada
, pp.
1521
1528
.
38.
Garland
,
A.
, and
Fadel
,
G.
,
2015
, “
Design and Manufacturing Functionally Gradient Material Objects With An Off the Shelf Three-Dimensional Printer: Challenges and Solutions
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111407
. 10.1115/1.4031097
You do not currently have access to this content.