Abstract

This paper presents a long short-term memory (LSTM)-based ensemble learning approach for time-dependent reliability analysis. An LSTM network is first adopted to learn system dynamics for a specific setting with a fixed realization of time-independent random variables and stochastic processes. By randomly sampling the time-independent random variables, multiple LSTM networks can be trained and leveraged with the Gaussian process (GP) regression to construct a global surrogate model for the time-dependent limit state function. In detail, a set of augmented data is first generated by the LSTM networks and then utilized for GP modeling to estimate system responses under time-dependent uncertainties. With the GP models, the time-dependent system reliability can be approximated directly by sampling-based methods such as the Monte Carlo simulation (MCS). Three case studies are introduced to demonstrate the efficiency and accuracy of the proposed approach.

References

References
1.
Keshtegar
,
B.
, and
Meng
,
Z.
,
2017
, “
A Hybrid Relaxed First-Order Reliability Method for Efficient Structural Reliability Analysis
,”
Struct. Saf.
,
66
, pp.
84
93
. 10.1016/j.strusafe.2017.02.005
2.
Gong
,
C.
, and
Zhou
,
W.
,
2017
, “
First-Order Reliability Method-Based System Reliability Analyses of Corroding Pipelines Considering Multiple Defects and Failure Modes
,”
Struct. Infrastruct. Eng.
,
13
(
11
), pp.
1451
1461
. 10.1080/15732479.2017.1285330
3.
Huang
,
X.
,
Li
,
Y.
,
Zhang
,
Y.
, and
Zhang
,
X.
,
2018
, “
A New Direct Second-Order Reliability Analysis Method
,”
Appl. Math. Modell.
,
55
, pp.
68
80
. 10.1016/j.apm.2017.10.026
4.
Meng
,
Z.
,
Yang
,
D.
,
Zhou
,
H.
, and
Yu
,
B.
,
2018
, “
An Accurate and Efficient Reliability-Based Design Optimization Using the Second Order Reliability Method and Improved Stability Transformation Method
,”
Eng. Optim.
,
50
(
5
), pp.
749
765
. 10.1080/0305215X.2017.1351962
5.
Pedroso
,
D. M.
,
2017
, “
FORM Reliability Analysis Using a Parallel Evolutionary Algorithm
,”
Struct. Saf.
,
65
, pp.
84
99
. 10.1016/j.strusafe.2017.01.001
6.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
. 10.1115/1.4034219
7.
Xiao
,
N.-C.
,
Zuo
,
M. J.
, and
Guo
,
W.
,
2018
, “
Efficient Reliability Analysis Based on Adaptive Sequential Sampling Design and Cross-Validation
,”
Appl. Math. Modell.
,
58
, pp.
404
420
. 10.1016/j.apm.2018.02.012
8.
Ma
,
J.
,
Ren
,
Z.
,
Zhao
,
G.
,
Zhang
,
Y.
, and
Koh
,
C.-S.
,
2017
, “
A New Reliability Analysis Method Combining Adaptive Kriging With Weight Index Monte Carlo Simulation
,”
IEEE Trans. Magn.
,
54
(
3
), pp.
1
4
.
9.
Shayanfar
,
M. A.
,
Barkhordari
,
M. A.
,
Barkhori
,
M.
, and
Barkhori
,
M.
,
2018
, “
An Adaptive Directional Importance Sampling Method for Structural Reliability Analysis
,”
Struct. Saf.
,
70
, pp.
14
20
. 10.1016/j.strusafe.2017.07.006
10.
Gong
,
C.
, and
Zhou
,
W.
,
2018
, “
Importance Sampling-Based System Reliability Analysis of Corroding Pipelines Considering Multiple Failure Modes
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
199
208
. 10.1016/j.ress.2017.08.023
11.
Yun
,
W.
,
Lu
,
Z.
, and
Jiang
,
X.
,
2018
, “
A Modified Importance Sampling Method for Structural Reliability and Its Global Reliability Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
57
(
4
), pp.
1625
1641
. 10.1007/s00158-017-1832-z
12.
Hristov
,
P.
,
DiazDelaO
,
F.
,
Farooq
,
U.
, and
Kubiak
,
K.
,
2019
, “
Adaptive Gaussian Process Emulators for Efficient Reliability Analysis
,”
Appl. Math. Modell.
,
71
, pp.
138
151
. 10.1016/j.apm.2019.02.014
13.
Jiang
,
C.
,
Qiu
,
H.
,
Yang
,
Z.
,
Chen
,
L.
,
Gao
,
L.
, and
Li
,
P.
,
2019
, “
A General Failure-Pursuing Sampling Framework for Surrogate-Based Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
183
, pp.
47
59
. 10.1016/j.ress.2018.11.002
14.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
. 10.1115/1.4026033
15.
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
Active Resource Allocation for Reliability Analysis With Model Bias Correction
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051403
. 10.1115/1.4042344
16.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
. 10.1115/1.4035860
17.
Li
,
G.
,
Li
,
B.
, and
Hu
,
H.
,
2018
, “
A Novel First-Order Reliability Method Based on Performance Measure Approach for Highly Nonlinear Problems
,”
Struct. Multidiscip. Optim.
,
57
(
4
), pp.
1593
1610
. 10.1007/s00158-017-1830-1
18.
Yu
,
S.
, and
Wang
,
Z.
,
2018
, “
A Novel Time-Variant Reliability Analysis Method Based on Failure Processes Decomposition for Dynamic Uncertain Structures
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051401
. 10.1115/1.4039387
19.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2018
, “
Adaptive Surrogate Modeling for Time-Dependent Multidisciplinary Reliability Analysis
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021401
. 10.1115/1.4038333
20.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
. 10.1002/j.1538-7305.1944.tb00874.x
21.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
. 10.1007/s00158-013-0937-2
22.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
. 10.1016/j.ress.2003.10.005
23.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
. 10.1115/1.4007931
24.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
. 10.1115/1.4033428
25.
Shi
,
Y.
,
Lu
,
Z.
,
Xu
,
L.
, and
Chen
,
S.
,
2019
, “
An Adaptive Multiple-Kriging-Surrogate Method for Time-Dependent Reliability Analysis
,”
Appl. Math. Modell.
,
70
, pp.
545
571
. 10.1016/j.apm.2019.01.040
26.
Zhang
,
L.
,
Yang
,
F.
,
Zhang
,
Y. D.
, and
Zhu
,
Y. J.
,
2016
, “
Road Crack Detection Using Deep Convolutional Neural Network
,”
Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP)
,
Phoenix, AZ
,
Sept. 25–28
,
IEEE
, pp.
3708
3712
.
27.
Wang
,
J.
, and
Perez
,
L.
,
2017
, “The Effectiveness of Data Augmentation in Image Classification Using Deep Learning,”
Convolutional Neural Networks Vis. Recognit.
, arXiv preprint arXiv:1712.04621.
28.
Young
,
T.
,
Hazarika
,
D.
,
Poria
,
S.
, and
Cambria
,
E.
,
2018
, “
Recent Trends in Deep Learning Based Natural Language Processing
,”
IEEE Comput. Intell. Mag.
,
13
(
3
), pp.
55
75
. 10.1109/MCI.2018.2840738
29.
Vardhana
,
M.
,
Arunkumar
,
N.
,
Lasrado
,
S.
,
Abdulhay
,
E.
, and
Ramirez-Gonzalez
,
G.
,
2018
, “
Convolutional Neural Network for Bio-Medical Image Segmentation With Hardware Acceleration
,”
Cognit. Syst. Res.
,
50
, pp.
10
14
. 10.1016/j.cogsys.2018.03.005
30.
Tai
,
L.
,
Paolo
,
G.
, and
Liu
,
M.
,
2017
, “
Virtual-to-Real Deep Reinforcement Learning: Continuous Control of Mobile Robots for Mapless Navigation
,”
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada
,
Sept. 24–28
,
IEEE
, pp.
31
36
.
31.
Zhang
,
T.
,
Kahn
,
G.
,
Levine
,
S.
, and
Abbeel
,
P.
,
2016
, “
Learning Deep Control Policies for Autonomous Aerial Vehicles With MPC-Guided Policy Search
,”
Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
,
IEEE
, pp.
528
535
.
32.
Choi
,
E.
,
Schuetz
,
A.
,
Stewart
,
W. F.
, and
Sun
,
J.
,
2016
, “
Using Recurrent Neural Network Models for Early Detection of Heart Failure Onset
,”
J. Am. Med. Inform. Assoc.
,
24
(
2
), pp.
361
370
.
33.
Guo
,
L.
,
Li
,
N.
,
Jia
,
F.
,
Lei
,
Y.
, and
Lin
,
J.
,
2017
, “
A Recurrent Neural Network Based Health Indicator for Remaining Useful Life Prediction of Bearings
,”
Neurocomputing
,
240
, pp.
98
109
. 10.1016/j.neucom.2017.02.045
34.
Wu
,
Y.
,
Yuan
,
M.
,
Dong
,
S.
,
Lin
,
L.
, and
Liu
,
Y.
,
2018
, “
Remaining Useful Life Estimation of Engineered Systems Using Vanilla LSTM Neural Networks
,”
Neurocomputing
,
275
, pp.
167
179
. 10.1016/j.neucom.2017.05.063
35.
Kong
,
W.
,
Dong
,
Z. Y.
,
Jia
,
Y.
,
Hill
,
D. J.
,
Xu
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network
,”
IEEE Trans. Smart Grid
,
10
(
1
), pp.
841
851
. 10.1109/TSG.2017.2753802
36.
Wang
,
Z.
, and
Chen
,
W.
,
2016
, “
Time-Variant Reliability Assessment Through Equivalent Stochastic Process Transformation
,”
Reliab. Eng. Syst. Saf.
,
152
, pp.
166
175
. 10.1016/j.ress.2016.02.008
You do not currently have access to this content.