Abstract

Research in engineering system evolution studies the technical performance (e.g., speed, capacity, and energy efficiency) and the functional and architectural changes of engineering systems (e.g., automobiles, aircrafts, laptops, and smartphones) over time. The research results of engineering system evolution help designers, R&D managers, investors, and policy makers to generate innovative design concepts, set reasonable R&D targets, invest in promising technologies, and develop effective incentive policies. In this paper, we introduce engineering system evolution as an emerging research area. We develop a cyclic model to understand the general structure of engineering system evolution and summarize seven basic research questions accordingly. A review and analysis of prior research related to engineering system evolution is provided to identify the pioneering works in this promising research area. We also discuss the challenges and opportunities in the quantitative and qualitative study of engineering system evolution for future research.

References

References
1.
Iatrou
,
K.
,
2014
,
100 Years of Commercial Aviation
,
HERMES Air Transport Club
,
Montreal, QC
.
2.
Farmer
,
J. D.
, and
Lafond
,
F.
,
2016
, “
How Predictable Is Technological Progress?
Res. Policy
,
45
(
3
), pp.
647
665
. 10.1016/j.respol.2015.11.001
3.
Nagy
,
B.
,
Farmer
,
J. D.
,
Bui
,
Q. M.
, and
Trancik
,
J. E.
,
2013
, “
Statistical Basis for Predicting Technological Progress
,”
PLoS One
,
8
(
2
), p.
e52669
. 10.1371/journal.pone.0052669
4.
Meade
,
N.
, and
Islam
,
T.
,
1998
, “
Technological Forecasting—Model Selection, Model Stability, and Combining Models
,”
Manage. Sci.
,
44
(
8
), pp.
1115
1130
. 10.1287/mnsc.44.8.1115
5.
Magee
,
C. L.
,
Basnet
,
S.
,
Funk
,
J. L.
, and
Benson
,
C. L.
,
2016
, “
Quantitative Empirical Trends in Technical Performance
,”
Technol. Forecast. Soc. Change
,
104
, pp.
237
246
. 10.1016/j.techfore.2015.12.011
6.
Basalla
,
G.
,
1988
,
The Evolution of Technology
,
Cambridge University Press
,
Cambridge, UK
.
7.
Van den Belt
,
H.
, and
Rip
,
A.
,
2012
,
The Social Construction of Technological Systems. New Directions in the Sociology and History of Technology
,
W. E.
Bijker
,
T. P.
Hughes
, and
T.
Pinch
, eds.,
The MIT Press
,
Cambridge, MA
, pp.
135
158
.
8.
Daly
,
M.
, and
Gunston
,
B.
,
2008
,
Jane’s Aero-Engines
,
Jane’s Information Group Limited
,
Surry, UK
.
9.
Anderson
,
P.
, and
Tushman
,
M. L.
,
1990
, “
Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change
,”
Adm. Sci. Quart.
,
35
(
4
), pp.
604
633
. 10.2307/2393511
10.
Sahal
,
D.
,
1985
, “
Technological Guideposts and Innovation Avenues
,”
Res. Policy
,
14
(
2
), pp.
61
82
. 10.1016/0048-7333(85)90015-0
11.
Christensen
,
C.
,
2013
,
The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail
,
Harvard Business Review Press
,
Cambridge, MA
.
12.
Ettlie
,
J. E.
,
Bridges
,
W. P.
, and
O’keefe
,
R. D.
,
1984
, “
Organization Strategy and Structural Differences for Radical Versus Incremental Innovation
,”
Manage. Sci.
,
30
(
6
), pp.
682
695
. 10.1287/mnsc.30.6.682
13.
Leifer
,
R.
,
McDermott
,
C. M.
,
O’connor
,
G. C.
,
Peters
,
L. S.
,
Rice
,
M. P.
, and
Veryzer
,
R. W.
, Jr.
,
2000
,
Radical Innovation: How Mature Companies Can Outsmart Upstarts
,
Harvard Business Press
,
Cambridge, MA
.
14.
Pahl
,
G.
, and
Beitz
,
W.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
London, UK
.
15.
Blanchard
,
B. S.
,
Fabrycky
,
W. J.
, and
Fabrycky
,
W. J.
,
1998
,
Systems Engineering and Analysis
,
Prentice Hall
,
Upper Saddle River, NJ
.
16.
Otto
,
K. N.
, and
Wood
,
K. L.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice-Hall, Inc.
,
Upper Saddle River, NJ
.
17.
Otto
,
K. N.
, and
Wood
,
K. L.
,
1998
, “
Product Evolution: A Reverse Engineering and Redesign Methodology
,”
Res. Eng. Des.
,
10
(
4
), pp.
226
243
. 10.1007/s001639870003
18.
Schaller
,
R. R.
,
1997
, “
Moore’s Law: Past, Present and Future
,”
IEEE Spectr.
,
34
(
6
), pp.
52
59
. 10.1109/6.591665
19.
Kanade
,
T.
,
Thorpe
,
C.
, and
Whittaker
,
W.
,
1986
, “
Autonomous Land Vehicle Project at CMU
,”
Proceedings of the ACM Fourteenth Annual Conference on Computer Science
, Cincinnati, OH
,
February
, pp.
71
80
.
20.
Gunston
,
B.
,
2016
,
Jane’s All the World’s Aircraft: Development & Production: 2016–17
,
IHS Global
,
London, UK
.
21.
Kott
,
A.
,
2019
, “
Initial Data Sets for Explorations in Long Range Forecasting of Military Technologies
,”
ARL SR 0417
,
US Army Combat Capabilities Development Command Army Research Laboratory
,
Aberdeen Proving Ground, MD
, https://apps.dtic.mil/docs/citations/AD1073690, Accessed October 3, 2019.
22.
Hyndman
,
R. J.
, and
Athanasopoulos
,
G.
,
2014
,
Forecasting: Principles and Practice
,
OTexts
,
Columbia, SC
.
23.
Betz
,
F.
,
1993
,
Strategic Technology Management
,
McGraw-Hill, Inc
,
New York
.
24.
Nieto
,
M.
,
Lopéz
,
F.
, and
Cruz
,
F.
,
1998
, “
Performance Analysis of Technology Using the S Curve Model: The Case of Digital Signal Processing (DSP) Technologies
,”
Technovation
,
18
(
6–7
), pp.
439
457
. 10.1016/S0166-4972(98)00021-2
25.
Moore
,
G. E.
,
1965
,
Cramming More Components Onto Integrated Circuits, Electronics
,
McGraw-Hill
,
New York
.
26.
Gompertz
,
B.
,
1825
, “
On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies
,”
Philos. Trans. R. Soc. Lond.
,
115
, pp.
513
583
. 10.1098/rstl.1825.0026
27.
Bass
,
F. M.
,
1969
, “
A New Product Growth for Model Consumer Durables
,”
Manage. Sci.
,
15
(
5
), pp.
215
227
. 10.1287/mnsc.15.5.215
28.
Mansfield
,
E.
,
1961
, “
Technical Change and the Rate of Imitation
,”
Econometrica
,
29
(
4
), pp.
741
766
. 10.2307/1911817
29.
Sharif
,
M. N.
, and
Islam
,
M. N.
,
1980
, “
The Weibull Distribution as a General Model for Forecasting Technological Change
,”
Technol. Forecast. Soc. Change
,
18
(
3
), pp.
247
256
. 10.1016/0040-1625(80)90026-8
30.
Sharif
,
M. N.
, and
Kabir
,
C.
,
1976
, “
A Generalized Model for Forecasting Technological Substitution
,”
Technol. Forecast. Soc. Change
,
8
(
4
), pp.
353
364
. 10.1016/0040-1625(76)90027-5
31.
Erto
,
P.
, and
Lanzotti
,
A
.,
1995
, “Some Tools to Control the Technological Innovation Process,”
Total Quality Management: Proceedings of the First World Congress
,
G. K.
Kanji
, ed.,
Springer Netherlands
,
Dordrecht
, pp.
412
415
.
32.
Erto
,
P.
, and
Vanacore
,
A
,
2009
,
Statistics for Innovation
,
P.
Erto
, ed.,
Springer
,
Milan
, pp.
247
260
.
33.
Sood
,
A.
,
James
,
G. M.
,
Tellis
,
G. J.
, and
Zhu
,
J.
,
2012
, “
Predicting the Path of Technological Innovation: SAW vs. Moore, Bass, Gompertz, and Kryder
,”
Mark. Sci.
,
31
(
6
), pp.
964
979
. 10.1287/mksc.1120.0739
34.
Zhang
,
G.
,
McAdams
,
D. A.
,
Shankar
,
V.
, and
Mohammadi Darani
,
M.
,
2018
, “
Technology Evolution Prediction Using Lotka–Volterra Equations
,”
ASME J. Mech. Des.
,
140
(
6
), p.
061101
. 10.1115/1.4039448
35.
Zhang
,
G.
,
Allaire
,
D.
,
McAdams
,
D. A.
, and
Shankar
,
V.
,
2019
, “
System Evolution Prediction and Manipulation Using a Lotka–Volterra Ecosystem Model
,”
Des. Stud.
,
60
, pp.
103
138
. 10.1016/j.destud.2018.11.001
36.
Zhang
,
G.
,
McAdams
,
D. A.
,
Shankar
,
V.
, and
Darani
,
M. M.
,
2017
, “
Modeling the Evolution of System Technology Performance When Component and System Technology Performances Interact: Commensalism and Amensalism
,”
Technol. Forecast. Soc. Change
,
125
, pp.
116
124
. 10.1016/j.techfore.2017.08.004
37.
Naim
,
A. M.
, and
Lewis
,
K.
,
2017
, “
Modeling the Dynamics of Innovation in Engineered Systems
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 2A: 43rd Design Automation Conference
,
Cleveland, OH
,
Aug. 6–9
, p.
V02AT03A018
.
38.
Zhang
,
G.
,
Allaire
,
D.
,
Shankar
,
V.
, and
McAdams
,
D. A.
,
2019
, “
A Case Against the Trickle-Down Effect in Technology Ecosystems
,”
PLoS One
,
14
(
6
), p.
e0218370
. 10.1371/journal.pone.0218370
39.
Benkenstein
,
M.
, and
Bloch
,
B.
,
1993
, “
Models of Technological Evolution: Their Impact on Technology Management
,”
Mark. Intell. Plann.
,
11
(
1
), pp.
20
27
. 10.1108/02634509310024146
40.
Young
,
P.
,
1993
, “
Technological Growth Curves: A Competition of Forecasting Models
,”
Technol. Forecast. Soc. Change
,
44
(
4
), pp.
375
389
. 10.1016/0040-1625(93)90042-6
41.
Pielou
,
E. C.
,
1969
,
An Introduction to Mathematical Ecology
,
Wiley-Interscience
,
New York
.
42.
Lilien
,
G. L.
,
Kotler
,
P.
, and
Moorthy
,
K. S.
,
1992
,
Marketing Models
,
Prentice Hall
,
Englewood Cliffs, NJ
.
43.
Ghysels
,
E.
, and
Jasiak
,
J.
,
1997
,
GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model
,
CIRANO
,
Montreal
.
44.
Wooldridge
,
J. M.
,
2012
,
Introductory Econometrics: A Modern Approach
,
Cengage Learning
,
Mason, OH
.
45.
Foster
,
R. N.
,
1988
,
Innovation: The Attacker’s Advantage
,
Summit books
,
Philippines
.
46.
Sood
,
A.
, and
Tellis
,
G. J.
,
2005
, “
Technological Evolution and Radical Innovation
,”
J. Mark.
,
69
(
3
), pp.
152
168
. 10.1509/jmkg.69.3.152.66361
47.
Christensen
,
C. M.
,
1992
, “
Exploring the Limits of the Technology S-Curve. Part I: Component Technologies
,”
Prod. Oper. Manage.
,
1
(
4
), pp.
334
357
. 10.1111/j.1937-5956.1992.tb00001.x
48.
Erto
,
P.
,
2009
,
Statistics for Innovation Statistical Design of “Continuous” Product Innovation
,
Springer
,
Milan, Italy
.
49.
D’Avino
,
D.
,
2008
, “
Stochastic Performance Modelling and Management for Technological Systems
,”
PhD dissertation
,
University of Naples Federico II, Department of Aerospace Engineering
, http://www.fedoa.unina.it/1831/1/DAvino_Ingegneria_Aerospaziale_Navale_e_della_Qualita.pdf
50.
Track
,
E.
,
Forbes
,
N.
, and
Strawn
,
G.
,
2017
, “
The End of Moore’s Law
,”
Comput. Sci. Eng.
,
19
(
2
), pp.
4
6
. 10.1109/MCSE.2017.25
51.
Chatfield
,
C.
,
1993
, “
Calculating Interval Forecasts
,”
J. Bus. Econ. Stat.
,
11
(
2
), pp.
121
135
.
52.
Armstrong
,
J. S.
,
2001
,
Principles of Forecasting: A Handbook for Researchers and Practitioners
,
Kluwer Academic
,
Boston, MA
.
53.
Chatfield
,
C.
,
1996
, “
Model Uncertainty and Forecast Accuracy
,”
J. Forecast.
,
15
(
7
), pp.
495
508
. 10.1002/(SICI)1099-131X(199612)15:7<495::AID-FOR640>3.0.CO;2-O
54.
Chatfield
,
C.
,
1988
, “
What Is the ‘Best’ Method of Forecasting?
,”
J. Appl. Stat.
,
15
(
1
), pp.
19
38
. 10.1080/02664768800000003
55.
Montgomery
,
D. C.
,
Peck
,
E. A.
, and
Vining
,
G. G.
,
2006
,
Introduction to Linear Regression Analysis
,
Wiley-Interscience
,
Hoboken, NJ
.
56.
Shumway
,
R. H.
, and
Stoffer
,
D. S.
,
2011
,
Time Series Analysis and Its Applications
,
Springer
,
New York
.
57.
Kiureghian
,
A. D.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
Struct. Saf.
,
31
(
2
), pp.
105
112
. 10.1016/j.strusafe.2008.06.020
58.
Arendt
,
J. L.
,
McAdams
,
D. A.
, and
Malak
,
R. J.
,
2012
, “
Uncertain Technology Evolution and Decision Making in Design
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100904
. 10.1115/1.4007396
59.
Zhang
,
G.
,
Allaire
,
D.
,
McAdams
,
D. A.
, and
Shankar
,
V.
,
2019
, “
Generating Technology Evolution Prediction Intervals Using a Bootstrap Method
,”
ASME J. Mech. Des.
,
141
(
6
), p.
061401
. 10.1115/1.4041860
60.
Williams
,
W. H.
, and
Goodman
,
M. L.
,
1971
, “
A Simple Method for the Construction of Empirical Confidence Limits for Economic Forecasts
,”
J. Am. Stat. Assoc.
,
66
(
336
), pp.
752
754
. 10.1080/01621459.1971.10482340
61.
Makridakis
,
S.
,
Hibon
,
M.
,
Lusk
,
E.
, and
Belhadjali
,
M.
,
1987
, “
Confidence Intervals: An Empirical Investigation of the Series in the M-Competition
,”
Int. J. Forecast.
,
3
(
3
), pp.
489
508
. 10.1016/0169-2070(87)90045-8
62.
Braha
,
D.
,
2016
,
The Complexity of Design Networks: Structure and Dynamics, Experimental Design Research
,
Springer
,
New York
, pp.
129
151
.
63.
Allaire
,
D.
,
He
,
Q.
,
Deyst
,
J.
, and
Willcox
,
K.
,
2012
, “
An Information-Theoretic Metric of System Complexity With Application to Engineering System Design
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100906
. 10.1115/1.4007587
64.
Lloyd
,
S.
, and
Pagels
,
H.
,
1988
, “
Complexity as Thermodynamic Depth
,”
Ann. Phys.
,
188
(
1
), pp.
186
213
. 10.1016/0003-4916(88)90094-2
65.
Kolmogorov
,
A. N.
,
1968
, “
Three Approaches to the Quantitative Definition of Information
,”
Int. J. Comput. Math.
,
2
(
1–4
), pp.
157
168
. 10.1080/00207166808803030
66.
Dunning
,
T.
,
1993
, “
Accurate Methods for the Statistics of Surprise and Coincidence
,”
Comput. Ling.
,
19
(
1
), pp.
61
74
, https://dl.acm.org/citation.cfm?id=972454
67.
Good
,
I. J.
,
1985
, “
A New Measure of Surprise
,”
J. Stat. Comput. Simul.
,
21
(
1
), pp.
88
89
. 10.1080/00949658508810803
68.
Good
,
I. J.
,
1989
, “
Surprise Indexes and P-Values
,”
J. Stat. Comput. Simul.
,
32
(
1–2
), pp.
90
92
. 10.1080/00949658908811160
69.
Cagan
,
J. M.
, and
Vogel
,
C. M.
,
2013
,
Creating Breakthrough Products: Revealing the Secrets That Drive Global Innovation
,
Finantial Times Press
,
Upper Saddle River, NJ
.
70.
Kano
,
N.
,
Tsuji
,
S.
,
Seraku
,
N.
, and
Takerhashi
,
F.
,
1984
, “
Attractive Quality and Must-Be Quality,” Hinshitsu (Quality)
,”
J. Jpn. Soc. Qual. Control
,
14
(
2
), pp.
147
156
.
71.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
. 10.1007/s00163-001-0008-3
72.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
. 10.1115/1.1289637
73.
Nielsen Mobile
,
2008
, “In U.S., SMS Text Messaging Tops Mobile Phone Calling,”
NIELSEN
,
New York
, https://www.nielsen.com/us/en/insights/news/2008/in-us-text-messaging-tops-mobile-phone-calling.html, Accessed October 3, 2019.
74.
Kostovich
,
V.
,
McAdams
,
D. A.
, and
Moon
,
S. K.
,
2009
, “
Representing User Activity and Product Function for Universal Design
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 8: 21st International Conference on Design Theory and Methodology
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
83
100
.
75.
Otto
,
K.
,
Hölttä-Otto
,
K.
,
Simpson
,
T. W.
,
Krause
,
D.
,
Ripperda
,
S.
, and
Moon
,
S. K.
,
2016
, “
Global Views on Modular Design Research: Linking Alternative Methods to Support Modular Product Family Concept Development
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071101
. 10.1115/1.4033654
76.
Mannaert
,
H.
,
Verelst
,
J.
, and
De Bruyn
,
P.
,
2016
,
Normalized Systems Theory: From Foundations for Evolvable Software Toward a General Theory for Evolvable Design
,
KOPPA BVBA
,
Hasselt, Limburg
.
77.
van Heerden
,
A.
,
Guenov
,
M.
,
Molina-Cristobal
,
A.
,
Riaz
,
A.
, and
Bile
,
Y.
,
2018
, “
Combined Airframe and Subsystems Evolvability Exploration During Conceptual Design
,”
Proceedings of the 31st Congress of the International Council of the Aeronautical Science
,
Belo Horizonte, Brazil
,
Sept. 9–14
, pp.
683
696
, https://www.researchgate.net/publication/327944447_Combined_Airframe_and_Subsystems_Evolvability_Exploration_During_Conceptual_Design
78.
Tackett
,
M. W.
,
Mattson
,
C. A.
, and
Ferguson
,
S. M.
,
2014
, “
A Model for Quantifying System Evolvability Based on Excess and Capacity
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051002
. 10.1115/1.4026648
79.
Lim
,
D.
,
2009
, “
A Systematic Approach to Design for Lifelong Aircraft Evolution
,”
PhD dissertation
,
Georgia Institute of Technology
, http://hdl.handle.net/1853/28280
80.
Lee
,
S.
, and
Park
,
Y.
,
2005
, “
Customization of Technology Roadmaps According to Roadmapping Purposes: Overall Process and Detailed Modules
,”
Technol. Forecast. Soc. Change
,
72
(
5
), pp.
567
583
. 10.1016/j.techfore.2004.11.006
81.
Kim
,
E.
,
Yao
,
S.
, and
Agogino
,
A. M.
,
2015
, “
Design Roadmapping: Challenges and Opportunities
,”
Proceedings of the 20th International Conference on Engineering Design, Vol 6: Design Methods and Tools Part 2
,
Milan, Italy
,
July 27–30
, pp.
85
94
, https://www.designsociety.org/publication/37850/DESIGN+ROADMAPPING%3A+CHALLENGES+AND+OPPORTUNITIES
82.
Park
,
H.
, and
Magee
,
C. L.
,
2019
, “
Quantitative Identification of Technological Discontinuities
,”
IEEE Access
,
7
, pp.
8135
8150
. 10.1109/ACCESS.2018.2890372
83.
Chen
,
C.
,
2006
, “
CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature
,”
J. Am. Soc. Inf. Sci. Technol.
,
57
(
3
), pp.
359
377
. 10.1002/asi.20317
84.
Kahn
,
D.
,
1984
, “
Cryptology and the Origins of Spread Spectrum: Engineers During World War II Developed an Unbreakable Scrambler to Guarantee Secure Communications Between Allied Leaders; Actress Hedy Lamarr Played a Role in the Technology
,”
IEEE Spectr.
,
21
(
9
), pp.
70
80
. 10.1109/MSPEC.1984.6370466
85.
Rhodes
,
R.
,
2012
,
Hedy’s Folly: The Life and Breakthrough Inventions of Hedy Lamarr, the Most Beautiful Woman in the World
,
Vintage
,
New York
.
86.
Song
,
H.
, and
Fu
,
K.
,
2019
, “
Design-by-Analogy: Exploring for Analogical Inspiration With Behavior, Material, and Component-Based Structural Representation of Patent Databases
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021014
. 10.1115/1.4043364
87.
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K.
,
2019
, “
Data-Driven Platform Design: Patent Data and Function Network Analysis
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021101
. 10.1115/1.4042083
88.
Fu
,
K.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
K.
,
2013
, “
Discovering Structure in Design Databases Through Functional and Surface Based Mapping
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031006
. 10.1115/1.4023484
89.
Jolie
,
E.
,
1978
, “
A Brief History of US Navy Torpedo Development
,”
NUSC Technical Document 5436
,
US Naval Underwater Systems Center
,
Rhode Island
, https://maritime.org/doc/jolie/index.htm
90.
Ullman
,
D. G.
,
2001
, “
Robust Decision-Making for Engineering Design
,”
J. Eng. Des.
,
12
(
1
), pp.
3
13
. 10.1080/09544820010031580
91.
Dalkey
,
N.
, and
Helmer
,
O.
,
1963
, “
An Experimental Application of the Delphi Method to the Use of Experts
,”
Manage. Sci.
,
9
(
3
), pp.
458
467
. 10.1287/mnsc.9.3.458
92.
Rowe
,
G.
, and
Wright
,
G.
,
1999
, “
The Delphi Technique as a Forecasting Tool: Issues and Analysis
,”
Int. J. Forecast.
,
15
(
4
), pp.
353
375
. 10.1016/S0169-2070(99)00018-7
93.
Abernethy
,
J. D.
, and
Frongillo
,
R. M.
,
2011
, “
A Collaborative Mechanism for Crowdsourcing Prediction Problems
,”
Proceedings of Advances in Neural Information Processing Systems
,
Granada, Spain
,
Dec. 12–17
, pp.
2600
2608
, http://papers.nips.cc/paper/4382-a-collaborative-mechanism-for-crowdsourcing-prediction-problems
94.
Utterback
,
J. M.
, and
Abernathy
,
W. J.
,
1975
, “
A Dynamic Model of Process and Product Innovation
,”
Omega
,
3
(
6
), pp.
639
656
. 10.1016/0305-0483(75)90068-7
95.
Klepper
,
S.
,
1996
, “
Entry, Exit, Growth, and Innovation Over the Product Life Cycle
,”
Am. Econ. Rev.
,
86
(
3
), pp.
562
583
. https://www.jstor.org/stable/2118212
You do not currently have access to this content.