Abstract

Dexterous hands are an important end-effector of robots, but their relatively low carrying capacity, small workspace and poor task adaptability are the key factors that restrict their wide application. To overcome these shortcomings of dexterous hands, a novel Lie-group-based synthesis method that extends the 3-[P][S] parallel mechanisms (PMs) to dexterous hands is presented, and a class of three-finger dexterous hands with parallel finger structure is obtained. The multimode operation is proposed by designing a double-slider palm that provides the hands with a large workspace and high task adaptability. The operation types are presented, and the dexterous in-hand manipulations in all modes are analyzed by means of Lie group theory. In addition, the equivalent structural characteristics of pinching objects are classified to elucidate the motion types and the rotational properties of the pinched objects. The inverse kinematics of fingers is presented and is used to identify the input–output relationships. Finally, the workspaces of the fingers are determined according to the result of the inverse kinematics, and the relationships between the size and displacements of the pinched object are presented. The proposed dexterous hands overcome the problems of low carrying capability, small workspace, and weak in-hand manipulation ability that are encountered with the traditional dexterous hands, which are underactuated and are built with a series finger structure, and can be potentially applied to various application domains, such as services, industry, and rescue.

References

References
1.
Okada
,
T.
,
1979
, “
Object Handling System for Manual Industry
,”
IEEE Trans. Syst. Man Cyber.
,
9
(
2
), pp.
79
89
. 10.1109/TSMC.1979.4310152
2.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Robot. Res.
,
1
(
1
), pp.
4
17
. 10.1177/027836498200100102
3.
Jacobsen
,
S. C.
,
Wood
,
J. E.
, and
Knutti
,
D. F.
,
1984
, “
The Utah/MIT Dextrous Hand: Work in Progress
,”
Int. J. Robot. Res.
,
3
(
4
), pp.
21
50
. 10.1177/027836498400300402
4.
Fukaya
,
N.
,
Toyama
,
S.
, and
Asfour
,
T.
,
2000
, “
Design of the Tuat/Karlsruhe Humanoid Hand
,”
Proceedings of IEEE/Robotics-Society-of-Japan International Conference on Intelligent Robots and Systems (IROS 2000)
,
Takamatsu, Japan
,
Oct. 31–Nov. 5
, pp.
1754
1759
.
5.
Lee
,
D. H.
,
Park
,
J. H.
, and
Park
,
S. W.
,
2017
, “
Kitech-Hand: A Highly Dexterous and Modularized Robotic Hand
,”
IEEE/ASME Trans. Mech.
,
22
(
2
), pp.
876
887
. 10.1109/TMECH.2016.2634602
6.
Martin
,
J.
, and
Grossard
,
M.
,
2014
, “
Design of a Fully Modular and Backdrivable Dexterous Hand
,”
Int. J. Robot. Res.
,
33
(
5
), pp.
783
798
. 10.1177/0278364913511677
7.
Iwata
,
H.
, and
Sugano
,
S.
,
2009
, “
Design of Anthropomorphic Dexterous Hand With Passive Joints and Sensitive Soft Skins
,”
2009 IEEE/SICE International Symposium on System Integration (SII)
,
Tokyo, Japan
,
Jan. 29
, pp.
129
134
.
8.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive SDM Hand: Design and Performance Evaluation
,”
Int. J. Robot. Res.
,
29
(
5
), pp.
585
597
. 10.1177/0278364909360852
9.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2014
, “
Linkage-Based Analysis and Optimization of an Underactuated Planar Manipulator for In-Hand Manipulation
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
211002
. 10.1115/1.4025620
10.
Belzile
,
B.
, and
Birglen
,
L.
,
2017
, “
Optimal Design of Self-Adaptive Fingers for Proprioceptive Tactile Sensing
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051004
. 10.1115/1.4037113
11.
Chen
,
W.
, and
Xiong
,
C.
,
2016
, “
On Adaptive Grasp With Underactuated Anthropomorphic Hands
,”
J. Bionic Eng.
,
13
(
1
), pp.
59
72
. 10.1016/S1672-6529(14)60160-8
12.
Rojas
,
N.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2016
, “
The GR2 Gripper: An Underactuated Hand for Open-Loop In-Hand Planar Manipulation
,”
IEEE Trans. Robot.
,
32
(
3
), pp.
763
770
. 10.1109/TRO.2016.2562122
13.
Bai
,
G.
,
Kong
,
X. W.
, and
Ritchie
,
J. M.
,
2017
, “
Kinematic Analysis and Dimensional Synthesis of a Meso-Gripper
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031017
. 10.1115/1.4035800
14.
Controzzi
,
M.
,
Clemente
,
F.
, and
Barone
,
D.
,
2017
, “
The SSSA-MyHand: A Dexterous Lightweight Myoelectric Hand Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
5
), pp.
459
468
. 10.1109/TNSRE.2016.2578980
15.
Montambault
,
S.
, and
Gosselin
,
C. M.
,
2001
, “
Analysis of Underactuated Mechanical Grippers
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
367
374
. 10.1115/1.1374198
16.
Nefzi
,
M.
,
Riedel
,
M.
, and
Corves
,
B.
,
2006
, “
Development and Design of a Multi-Fingered Gripper for Dexterous Manipulation
,”
IFAC Proc. Vol.
,
39
(
16
), pp.
133
138
. 10.3182/20060912-3-DE-2911.00026
17.
McCam
,
C. M.
, and
Dollar
,
A. M.
,
2017
, “
Design of a Stewart Platform-Inspired Dexterous Hand for 6-DOF Within-Hand Manipulation
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC
,
Sept. 24–28
, pp.
1158
1163
.
18.
Lee
,
J. J.
, and
Tsai
,
L. W.
,
2002
, “
Structural Synthesis of Multi-Fingered Hands
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
272
276
. 10.1115/1.1467080
19.
Borràs
,
J.
, and
Dollar
,
A. M.
,
2015
, “
Dimensional Synthesis of Three-Fingered Robot Hands for Maximal Precision Manipulation Workspace
,”
Int. J. Robot. Res.
,
34
(
14
), pp.
1731
1746
. 10.1177/0278364915608250
20.
Ma
,
R. R.
,
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Spherical Hands: Toward Underactuated, In-Hand Manipulation Invariant to Object Size and Grasp Location
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061021
. 10.1115/1.4034787
21.
Borràs
,
J.
, and
Dollar
,
A. M.
,
2014
, “
Analyzing Dexterous Hands Using a Parallel Robots Framework
,”
Auton. Robot.
,
36
(
1–2
), pp.
169
180
. 10.1007/s10514-013-9380-x
22.
Özgür
,
E.
,
Gogu
,
G.
, and
Mezouar
,
Y.
,
2017
, “
A Study on Dexterous Grasps Via Parallel Manipulation Analogy
,”
J. Intell. Robot. Syst.
,
87
(
1
), pp.
3
14
. 10.1007/s10846-017-0481-1
23.
Hota
,
R. K.
, and
Kumar
,
C. S.
,
2019
, “
Effect of Hand Design and Object Size on the Workspace of Three-Fingered Hands
,”
Mech. Mach. Theory
,
133
, pp.
311
328
. 10.1016/j.mechmachtheory.2018.11.011
24.
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Classification and Kinematic Equivalents of Contact Types for Fingertip-Based Robot Hand Manipulation
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041014
. 10.1115/1.4032865
25.
Li
,
Q. C.
,
Chen
,
Q. H.
, and
Wu
,
C. Y.
,
2013
, “
Geometrical Distribution of Rotational Axes of 3-[P][S] Parallel Mechanisms
,”
Mech. Mach. Theory
,
65
, pp.
46
57
. 10.1016/j.mechmachtheory.2013.02.007
26.
Carretero
,
J. A.
,
Podhorodeski
,
R. P.
, and
Nahon
,
M. A.
,
2000
, “
Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
17
24
. 10.1115/1.533542
27.
Chen
,
X.
,
Liu
,
X. J.
, and
Xie
,
F. G.
,
2014
, “
A Comparison Study on Motion/Force Transmissibility of Two Typical 3-DOF Parallel Manipulators: the Sprint Z3 and A3 Tool Heads
,”
Int. J. Adv. Robot. Syst.
,
11
(
1
), pp.
1
10
. 10.5772/57458
28.
Liu
,
X. J.
,
Wang
,
L. P.
,
Xie
,
F. G.
, and
Bonev
,
I. A.
,
2010
, “
Design of a Three-Axis Articulated Tool Head With Parallel Kinematics Achieving Desired Motion/Force Transmission Characteristics
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021009
. 10.1115/1.4001244
29.
Li
,
Q. C.
,
Huang
,
Z.
, and
Hervé
,
J. M.
,
2004
, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
173
180
. 10.1109/TRA.2004.824650
30.
Ye
,
W.
,
Li
,
Q. C.
, and
Chai
,
X. X.
,
2018
, “
New Family of 3-DOF UP-Equivalent Parallel Mechanisms With High Rotational Capability
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
66
77
. 10.1186/s10033-018-0201-1
31.
Li
,
Q. C.
, and
Hervé
,
J. M.
,
2010
, “
1T2R Parallel Mechanisms Without Parasitic Motion
,”
IEEE Trans. Robot.
,
26
(
3
), pp.
401
410
. 10.1109/TRO.2010.2047528
32.
Li
,
Q. C.
,
Chen
,
Z.
, and
Chen
,
Q. C.
,
2011
, “
Parasitic Motion Comparison of 3-PRS Parallel Mechanism With Different Limb Arrangements
,”
Robot. Comp. Integr. Manuf.
,
27
(
2
), pp.
389
396
. 10.1016/j.rcim.2010.08.007
You do not currently have access to this content.