Abstract

The authors present a Generative Adversarial Network (GAN) model that learns how to generate 3D models in their native format so that they can either be evaluated using complex simulation environments, or realized using methods such as additive manufacturing. Once initially trained, the GAN can create additional training data itself by generating new designs, evaluating them in a physics-based virtual environment, and adding the high performing ones to the training set. A case study involving a GAN model that is initially trained on 4045 3D aircraft models is used for demonstration, where the training data set updated with GAN-generated and evaluated designs, results in enhanced model generation, both in the geometric feasibility and performance of the designs. Z-tests on the performance scores of the generated aircraft models indicate a statistically significant improvement in the functionality of the generated models after three iterations of the training-evaluation process. In the case study, a number of techniques are explored to structure the generate-evaluate process in order to balance the need to generate feasible designs with the need for innovative designs.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.