This study introduces a new potential energy-based design method for simplifying elastic gear bodies in low- to mid-range frequency applications by bridging over the gear teeth with external stiffness elements. The advantage of the introduced method over more traditional approaches, which are either based on rigid gears or on replacing the teeth, is that the complex gear body and its dynamic behavior are preserved, albeit with fewer degrees of freedom. The method is demonstrated on a gear by replacing a single tooth under load and then validated numerically against a typical flexible gear model. The simulation results show good accuracy within the chosen frequency range and with a clear reduction in calculation time compared to the unreduced model. Furthermore, the extension and optimization potential of the results is discussed.

References

References
1.
Wegerhoff
,
M.
,
Schelenz
,
R.
, and
Jacobs
,
G.
,
2015
, “
Hybrid NVH Simulation for Electrical Vehicles II—Structural Model
,”
DAGA
,
Nürnberg, Germany
,
Mar. 16–19
, pp.
1289
1295
.
2.
Kamper
,
T.
,
Flock
,
S.
, and
Schelenz
,
R.
,
2016
, “
Advanced Load Application on Deformable Ring Gears in Planetary Gearboxes
,”
Multibody Syst. Dyn.
,
36
(
4
), pp.
323
337
.
3.
Golafshan
,
R.
,
Jacobs
,
G.
,
Wegerhoff
,
M.
,
Drichel
,
P.
, and
Berroth
,
J.
,
2018
, “
Investigation on the Effects of Structural Dynamics on Rolling Bearing Fault Diagnosis by Means of Multibody Simulation
,”
Int. J. Rotat. Mach.
,
2018
(
14
), pp.
1
18
.
4.
Wegerhoff
,
M.
,
2017
,
Methodik zur numerischen NVH Analyse eines elektrifizierten PKW Antriebsstrangs
[Methodology for the Numerical NVH Analysis of an Electrified Passenger Vehicle Drive Train],
Verlagsgruppe Mainz GmbH Aachen, Aachen
.
5.
Drichel
,
P.
,
Wegerhoff
,
M.
,
Schelenz
,
R.
, and
Jacobs
,
G.
,
2014
, “
Modeling an Electric Vehicle Powertrain and Analysis of Vibration Characteristics
,”
Torsional Vibration Symposium
,
Salzburg, Austria
,
May 21–23
.
6.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthq. Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.
7.
Hoff
,
C.
,
Hughes
,
T. J. R.
,
Hulbert
,
G.
, and
Pahl
,
P. J.
,
1989
, “
Extended Comparison of the Hilber-Hughes-Taylor α-Method and the Θ1-Method
,”
Comput. Methods Appl. Mech. Eng.
,
76
(
1
), pp.
87
93
.
8.
Konyukhov
,
A.
, and
Schweizerhof
,
K.
,
2013
, “Surface-to-Surface Contact—Various Aspects for Implementations Within the Finite Element Method,”
Computational Contact Mechanics
,
Springer
,
Berlin, Heidelberg
, pp.
209
291
.
9.
Stadlmayr
,
D.
,
Witteveen
,
W.
, and
Steiner
,
W.
,
2017
, “
A Generalized Constraint Reduction Method for Reduced Order MBS Models
,”
Multibody Syst. Dyn.
,
41
(
3
), pp.
259
274
.
10.
Schulz
,
C.
, and
Mulski
,
S.
,
2015
, “
Modelling and Simulating Flexible Gears—A Solution-Oriented Approach
,”
NAFEMS World Congress
,
San Diego, USA
,
June 21–24
.
11.
Burrows
,
A.
,
2016
, “
Online Rolling Bearing Calculation Software Release
,”
World Pumps
,
2016
(
12
), p.
8
.
12.
Andary
,
F.
,
Wegerhoff
,
M.
, and
Piel
,
D.
,
2015
, “
MBS Gear-Tooth Stiffness Model: Implementation of a New Coupling Model for Fast and Accurate Simulation of Gear Pairs Using Stiffness Characteristic Arrays
,”
VDI International Conference on Gears
,
Garching, Germany
,
Oct. 5–7
, pp.
569
579
.
13.
BSI (BS ISO 6336-1:2006)
, “
Calculation of Load Capacity of Spur and Helical Gears, Part 1: Basic Principles, Introduction and General Influence Factors
.”
14.
Cai
,
Y.
,
1995
, “
Simulation on the Rotational Vibration of Helical Gears in Consideration of the Tooth Separation Phenomenon (A New Stiffness Function of Helical Involute Tooth Pair)
,”
J. Mech. Des.
,
117
(
3
), pp.
460
469
.
15.
Cui
,
L.
,
Zhai
,
H.
, and
Zhang
,
F.
,
2015
, “
Research on the Meshing Stiffness and Vibration Response of Cracked Gears Based on the Universal Equation of Gear Profile
,”
Mech. Mach. Theory
,
94
(
December
), pp.
80
95
.
16.
Gu
,
X.
,
Velex
,
P.
,
Sainsot
,
P.
, and
Bruyère
,
J.
,
2015
, “
Analytical Investigations on the Mesh Stiffness Function of Solid Spur and Helical Gears
,”
J. Mech. Des.
,
137
(
6
), p.
063301
.
17.
Wan
,
Z.
,
Cao
,
H.
,
Zi
,
Y.
,
He
,
W.
, and
Chen
,
Y.
,
2015
, “
Mesh Stiffness Calculation Using an Accumulated Integral Potential Energy Method and Dynamic Analysis of Helical Gears
,”
Mech. Mach. Theory
,
92
(
October
), pp.
447
463
.
18.
Ma
,
H.
,
Zeng
,
J.
,
Feng
,
R.
,
Pang
,
X.
, and
Wen
,
B.
,
2016
, “
An Improved Analytical Method for Mesh Stiffness Calculation of Spur Gears With Tip Relief
,”
Mech. Mach. Theory
,
98
(
April
), pp.
64
80
.
19.
Sánchez
,
M. B.
,
Pleguezuelos
,
M.
, and
Pedrero
,
J. I.
,
2017
, “
Approximate Equations for the Meshing Stiffness and the Load Sharing Ratio of Spur Gears Including Hertzian Effects
,”
Mech. Mach. Theory
,
109
(
March
), pp.
231
249
.
20.
Wang
,
Q.
,
Chen
,
K.
,
Zhao
,
B.
,
Ma
,
H.
, and
Kong
,
X.
,
2018
, “
An Analytical-Finite-Element Method for Calculating Mesh Stiffness of Spur Gear Pairs With Complicated Foundation and Crack
,”
Eng. Failure Anal.
94
(
December
), pp.
339
353
.
21.
Wang
,
Q.
,
Zhao
,
B.
,
Fu
,
Y.
,
Kong
,
X.
, and
Ma
,
H.
,
2018
, “
An Improved Time-Varying Mesh Stiffness Model for Helical Gear Pairs Considering Axial Mesh Force Component
,”
Mech. Syst. Signal Process.
106
(
December
), pp.
413
429
.
22.
Andersson
,
A.
, and
Vedmar
,
L.
,
2003
, “
A Dynamic Model to Determine Vibrations in Involute Helical Gears
,”
J. Sound Vib.
,
260
(
2
), pp.
195
212
.
23.
Afework
,
Y.
, and
Tesfaye
,
T.
,
2006
, “
Variable Mesh Stiffness of Spur Gear Teeth Using Finite Element Method
,” ,
23
(
2006
), pp.
59
66
.
24.
Kiekbusch
,
T.
, and
Howard
,
I.
,
2007
, “
A Common Formula for the Combined Torsional Mesh Stiffness of Spur Gears
,”
5th Australasian Congress on Applied Mechanics (ACAM)
,
Brisbane, Australia
,
Dec. 10–12
, pp.
710
716
.
25.
Lin
,
T.
,
Ou
,
H.
, and
Li
,
R.
,
2007
, “
A Finite Element Method for 3D Static and Dynamic Contact/Impact Analysis of Gear Drives
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
9–12
), pp.
1716
1728
.
26.
Hedlund
,
J.
, and
Lehtovaara
,
A.
,
2008
, “
A Parameterized Numerical Model for the Evaluation of Gear Mesh Stiffness Variation of a Helical Gear Pair
,”
Proc. Inst. Mech. Eng. Part C
,
222
(
7
), pp.
1321
1327
.
27.
Kiekbusch
,
T.
,
Sappok
,
D.
,
Sauer
,
B.
, and
Howard
,
I.
,
2011
, “
Calculation of the Combined Torsional Mesh Stiffness of Spur Gears With Two- and Three-Dimensional Parametrical FE Models
,”
Strojniški vestnik—J. Mech. Eng.
,
57
(
11
), pp.
810
818
.
28.
Chang
,
L.
,
Liu
,
G.
, and
Wu
,
L.
,
2015
, “
A Robust Model for Determining the Mesh Stiffness of Cylindrical Gears
,”
Mech. Mach. Theory
,
87
(
May
), pp.
93
114
.
29.
Cho
,
J. R.
,
Jeong
,
K. Y.
,
Park
,
M. H.
, and
Park
,
N. G.
,
2015
, “
Dynamic Response Analysis of Wind Turbine Gearbox Using Simplified Local Tooth Stiffness of Internal Gear System
,”
J. Comput. Nonlinear Dyn.
,
10
(
4
), p.
041001
.
30.
Feng
,
M.
,
Ma
,
H.
,
Li
,
Z.
,
Wang
,
Q.
, and
Wen
,
B.
,
2018
, “
An Improved Analytical Method for Calculating Time-Varying Mesh Stiffness of Helical Gears
,”
Meccanica
,
53
(
4–5
), pp.
1131
1145
.
31.
Liang
,
X.
,
Zhang
,
H.
,
Zuo
,
M. J.
, and
Qin
,
Y.
,
2018
, “
Three New Models for Evaluation of Standard Involute Spur Gear Mesh Stiffness
,”
Mech. Syst. Signal Process.
101
(
July
), pp.
424
434
.
32.
Munro
,
R. G.
,
Palmer
,
D.
, and
Morrish
,
L.
,
2006
, “
An Experimental Method to Measure Gear Tooth Stiffness Throughout and Beyond the Path of Contact
,”
Proc. Inst. Mech. Eng. Part C
,
215
(
7
), pp.
793
803
.
33.
Yesilyurt
,
I.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2003
, “
Gear Tooth Stiffness Reduction Measurement Using Modal Analysis and Its Use in Wear Fault Severity Assessment of Spur Gears
,”
NDT & E Int.
,
36
(
5
), pp.
357
372
.
34.
Wang
,
J.
, and
Howard
,
I.
,
2005
, “
The Torsional Stiffness of Involute Spur Gears
,”
Proc. Inst. Mech. Eng. Part C
,
218
(
1
), pp.
131
142
.
35.
Meagher
,
J.
,
Wu
,
X.
,
Kong
,
D.
, and
Lee
,
C. H. A.
,
2010
, “
Comparison of Gear Mesh Stiffness Modeling Strategies
,”
Proceedings of the IMAC-XXVIII
,
Jacksonville, FL
,
Feb. 1–4
,
Society for Experimental Mechanics Inc
., pp.
255
263
.
36.
Özgüven
,
N. H.
, and
Houser
,
D. R.
,
1988
, “
Mathematical Models Used in Gear Dynamics—A Review
,”
J. Sound Vib
,
121
(
3
), pp.
383
411
.
37.
Abousleiman
,
V.
, and
Velex
,
P.
,
2006
, “
A Hybrid 3D Finite Element/Lumped Parameter Model for Quasi-Static and Dynamic Analyses of Planetary/Epicyclic Gear Sets
,”
Mech. Mach. Theory
,
41
(
6
), pp.
725
748
.
38.
Ebrahimi
,
S.
, and
Eberhard
,
P.
,
2006
, “
Rigid-Elastic Modeling of Meshing Gear Wheels in Multibody Systems
,”
Multibody Syst. Dyn.
,
16
(
1
), pp.
55
71
.
39.
Lei
,
L.
,
2010
, “
A Multibody System Model for Meshing Gears
,”
44–47
(
2011
), pp.
1273
1278
.
40.
Fietkau
,
P.
, and
Bertsche
,
B.
,
2013
, “
Efficient Simulation of Gear Contacts Including Transient Elastohydrodynamic Effects
,”
J. Tribol.
,
135
(
3
), p.
031502
.
41.
Blockmans
,
B.
,
Tamarozzi
,
T.
,
Naets
,
F.
, and
Desmet
,
W.
,
2015
, “
A Nonlinear Parametric Model Reduction Method for Efficient Gear Contact Simulations
,”
Int. J. Numer. Methods Eng.
,
102
(
5
), pp.
1162
1191
.
42.
Özgüven
,
H. N.
, and
Houser
,
D. R.
,
1988
, “
Dynamic Analysis of High Speed Gears by Using Loaded Static Transmission Error
,”
J. Sound Vib.
,
125
(
1
), pp.
71
83
.
43.
Kubur
,
M.
,
Kahraman
,
A.
,
Zini
,
D. M.
, and
Kienzle
,
K.
,
2004
, “
Dynamic Analysis of a Multi-Shaft Helical Gear Transmission by Finite Elements: Model and Experiment
,”
J. Vib. Acoust.
,
126
(
3
), pp.
398
406
.
44.
Kahraman
,
A.
,
1993
, “
Effect of Axial Vibrations on the Dynamics of a Helical Gear Pair
,”
J. Vib. Acoust.
115
(
1
), pp.
33
39
.
45.
Umezawa
,
K.
,
Suzuki
,
T.
, and
Sato
,
T.
,
1986
, “
Vibration of Power Transmission Helical Gears: Approximate Equation of Tooth Stiffness
,”
Bull. JSME
,
29
(
251
), pp.
1605
1611
.
46.
Parker
,
R. G.
,
Vijayakar
,
S. M.
, and
Imajo
,
T.
,
2000
, “
Non-Linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparison
,”
J. Sound Vib.
,
237
(
3
), pp.
435
455
.
47.
Wu
,
S.
,
Zuo
,
M. J.
, and
Parey
,
A.
,
2008
, “
Simulation of Spur Gear Dynamics and Estimation of Fault Growth
,”
J. Sound Vib.
,
317
(
3–5
), pp.
608
624
.
48.
Kim
,
W.
,
Yoo
,
H. H.
, and
Chung
,
J.
,
2010
, “
Dynamic Analysis for a Pair of Spur Gears With Translational Motion Due to Bearing Deformation
,”
J. Sound Vib.
,
329
(
21
), pp.
4409
4421
.
49.
SIMPACK
,
2017
, Documentation for Simpack 2018x, Dassault Systemes SimuliaCorp., Johnston, RI, USA.
50.
Adams
,
2017
, “
Machinery Documentation. MSC Software
.”
51.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
New York
.
52.
Blankenship
,
G. W.
, and
Singh
,
R.
,
1995
, “
A New Gear Mesh Interface Dynamic Model to Predict Multi-Dimensional Force Coupling and Excitation
,”
Mech. Mach. Theory
,
30
(
1
), pp.
43
57
.
53.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2014
, “
A Review of Planetary and Epicyclic Gear Dynamics and Vibrations Research
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040804
.
54.
Ye
,
S.-Y.
, and
Tsai
,
S.-J.
,
2016
, “
A Computerized Method for Loaded Tooth Contact Analysis of High-Contact-Ratio Spur Gears With or Without Flank Modification Considering Tip Corner Contact and Shaft Misalignment
,”
Mech. Mach. Theory
,
97
(
March
), pp.
190
214
.
55.
Dresig
,
H.
, and
Schreiber
,
U.
,
2005
, “
Vibration Analysis for Planetary Gears. Modeling and Multibody Simulation
,”
International Conference on Mechanical Engineering and Mechanics
,
Nanjing, China
,
Oct. 26–28
, pp.
24
28
.
56.
Schulze
,
T.
,
Hartmann-Gerlach
,
C.
,
DriveConcepts GmbH
, and
Schlecht
,
B.
,
2010
,
Calculation of Load Distribution in Planetary Gears for an Effective Gear Design Process
.”, American Gear Manufacturers Association Technical Paper, Alexandria, VA.
57.
Weber
,
C.
,
Banaschek
,
K.
, and
Niemann
,
G.
,
1953
,
Formänderung und Profilrücknahme: bei gerad- und schrägverzahnten Rädern
, Schriftenreihe Antriebstechnik—Heft 11, F. Vieweg, Braunschweig.
58.
van der Seijs
,
M. V.
,
de Klerk
,
D.
,
Rixen
,
D. J.
, and
Rahimi
,
S.
,
2014
, “Validation of Current State Frequency Based Substructuring Technology for the Characterisation of Steering Gear–Vehicle Interaction,”
Topics in Experimental Dynamic Substructuring
, Vol.
2
,
Springer
,
New York, NY
, pp.
253
266
.
59.
Niemann
,
G.
, and
Winter
,
H.
,
2003
,
Maschinenelemente: Band 2: Getriebe Allgemein, Zahnradgetriebe—Grundlagen, Stirnradgetriebe
,
Springer
,
Berlin, Heidelberg
.
You do not currently have access to this content.