In engineering design problems, performance functions evaluate the quality of designs. Among the designs, some of them are classified as good designs if responses from performance functions satisfy a target point or range. An infinite set of good designs in the design space is defined as a solution space of the design problem. In practice, since the performance functions are analytical models or black-box simulations which are computationally expensive, it is difficult to obtain a complete solution space. In this paper, a method that finds a finite set of good designs, which is included in a solution space, is proposed. The method formulates the problem as optimization problems and utilizes gray wolf optimizer (GWO) in the way of design exploration. Target points of the exploration process are defined by clustering intermediate solutions for every iteration. The method is tested with a simple two-dimensional problem and an automotive vehicle design problem to validate and check the quality of solution points.

References

References
1.
Chowdhury
,
S.
,
Messac
,
A.
, and
Khire
,
R. A.
,
2011
, “
Comprehensive Product Platform Planning (CP3) Framework
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101004
.
2.
Simpson
,
T. W.
, and
Dsouza
,
B. S.
,
2004
, “
Assessing Variable Levels of Platform Commonality Within a Product Family Using a Multiobjective Genetic Algorithm
,”
Concurr. Eng.
,
12
(
2
), pp.
119
129
.
3.
Braun
,
R. D.
,
1996
, “
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,” Ph.D. thesis,
Stanford University
,
Stanford, CA
.
4.
Sobieszczanski-Sobieski
,
J.
,
Agte
,
J. S.
, and
Sandusky
,
R. R.
,
2000
, “
Bilevel Integrated System Synthesis
,”
AIAA J.
,
38
(
1
), pp.
164
172
.
5.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
.
6.
Singer
,
D. J.
,
Doerry
,
N.
, and
Buckley
,
M. E.
,
2009
, “
What Is Set-Based Design?
,”
Naval Eng. J.
,
121
(
4
), pp.
31
43
.
7.
Sobek
,
D. K.
,
Ward
,
A. C.
, and
Liker
,
J. K.
,
1999
, “
Toyota’s Principles of Set-Based Concurrent Engineering
,”
Sloan Manage. Rev.
,
40
(
2
), p.
67
.
8.
Bernstein
,
J. I.
,
1998
, “
Design Methods in the Aerospace Industry: Looking for Evidence of Set-Based Practices
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
9.
Hakanen
,
J.
, and
Knowles
,
J. D.
,
2017
, “
On Using Decision Maker Preferences With Parego
,”
International Conference on Evolutionary Multi-Criterion Optimization
,
Münster, Germany
,
Mar. 19–22
.
10.
Hannapel
,
S.
, and
Vlahopoulos
,
N.
,
2014
, “
Implementation of Set-Based Design in Multidisciplinary Design Optimization
,”
Struct. Multidiscipl. Optim.
,
50
(
1
), pp.
101
112
.
11.
Al-Ashaab
,
A.
,
Golob
,
M.
,
Attia
,
U. M.
,
Khan
,
M.
,
Parsons
,
J.
,
Andino
,
A.
,
Perez
,
A.
,
Guzman
,
P.
,
Onecha
,
A.
,
Kesavamoorthy
,
S.
, and
Martinez
,
G.
,
2013
, “
The Transformation of Product Development Process Into Lean Environment Using Set-Based Concurrent Engineering: A Case Study From an Aerospace Industry
,”
Concurr. Eng.
,
21
(
4
), pp.
268
285
.
12.
Lee
,
S.
,
Bae
,
J.
, and
Cho
,
Y. S.
,
2012
, “
Efficiency Analysis of Set-Based Design With Structural Building Information Modeling (s-bim) on High-Rise Building Structures
,”
Autom. Construct.
,
23
, pp.
20
32
.
13.
Tsang
,
E.
,
2014
,
Foundations of Constraint Satisfaction: The Classic Text
,
Academic Press
,
New York
(BoD—Books on Demand).
14.
Lottaz
,
C.
,
Smith
,
I. F.
,
Robert-Nicoud
,
Y.
, and
Faltings
,
B.
,
2000
, “
Constraint-Based Support for Negotiation in Collaborative Design
,”
Artif. Intell. Eng.
,
14
(
3
), pp.
261
280
.
15.
Yannou
,
B.
,
Moreno
,
F.
,
Thevenot
,
H. J.
, and
Simpson
,
T. W.
,
2005
, “
Faster Generation of Feasible Design Points
,”
Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2005)
,
Hyatt Regency, Long Beach, CA
,
Sept. 24–28
.
16.
Pedamallu
,
C. S.
,
Özdamar
,
L.
,
Csendes
,
T.
, and
Vinkó
,
T.
,
2008
, “
Efficient Interval Partitioning for Constrained Global Optimization
,”
J. Global Optim.
,
42
(
3
), pp.
369
384
.
17.
Mattson
,
C. A.
, and
Messac
,
A.
,
2003
, “
Concept Selection Using S-Pareto Frontiers
,”
AIAA J.
,
41
(
6
), pp.
1190
1198
.
18.
De Weck
,
O. L.
, and
Jones
,
M. B.
,
2006
, “
Isoperformance: Analysis and Design of Complex Systems With Desired Outcomes
,”
Syst. Eng.
,
9
(
1
), pp.
45
61
.
19.
Eichstetter
,
M.
,
Müller
,
S.
, and
Zimmermann
,
M.
,
2015
, “
Product Family Design With Solution Spaces
,”
ASME J. Mech. Des.
,
137
(
12
), pp.
121401
.
20.
Davis
,
L.
,
1991
,
Handbook of Genetic Algorithms
,
Van Nostrand Reinhold
,
New York
.
21.
Koza
,
J. R.
,
1992
,
Genetic Programming II, Automatic Discovery of Reusable Subprograms
,
MIT Press
,
Cambridge, MA
.
22.
Hansen
,
N.
, and
Kern
,
S.
,
2004
, “
Evaluating the CMA Evolution Strategy on Multimodal Test Functions
,”
International Conference on Parallel Problem Solving From Nature
,
Birmingham, UK
,
Sept. 18–22
.
23.
Dorigo
,
M.
, and
Gambardella
,
L. M.
,
1997
, “
Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem
,”
IEEE Trans. Evol. Comput.
,
1
(
1
), pp.
53
66
.
24.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Proceedings of the Sixth International Symposium on Micro Machine and Human Science (MHS’95)
,
Nagoya Municipal Industrial Research Institute
,
Oct. 4–6
.
25.
Mirjalili
,
S.
,
Mirjalili
,
S. M.
, and
Lewis
,
A.
,
2014
, “
Grey Wolf Optimizer
,”
Adv. Eng. Softw.
,
69
, pp.
46
61
.
26.
Hartigan
,
J. A.
, and
Wong
,
M. A.
,
1979
, “
Algorithm as 136: A K-Means Clustering Algorithm
,”
J. R. Stat. Soc. Ser. C
,
28
(
1
), pp.
100
108
.
27.
Rousseeuw
,
P. J.
,
1987
, “
Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis
,”
J. Comput. Appl. Math.
,
20
, pp.
53
65
.
28.
Willerton
,
S.
,
2015
, “
Spread: A Measure of the Size of Metric Spaces
,”
Int. J. Comput. Geom. Appl.
,
25
(
3
), pp.
207
225
.
29.
Faris
,
H.
,
Aljarah
,
I.
,
Al-Betar
,
M. A.
, and
Mirjalili
,
S.
,
2017
, “
Grey Wolf Optimizer: A Review of Recent Variants and Applications
,”
Neural Comput. Appl.
,
30
(
2
), pp.
413
435
.
30.
Meilă
,
M.
,
2006
, “
The Uniqueness of a Good Optimum for K-Means
,”
Proceedings of the 23rd International Conference on Machine Learning
,
Pittsburgh, PA, USA
,
June 25– 29
.
31.
Pelleg
,
D.
, and
Moore
,
A. W.
,
2000
, “
X-Means: Extending K-Means With Efficient Estimation of the Number of Clusters
,”
Proceedings of the 17th International Conference on Machine Learning
,
San Francisco, CA
.
32.
Aghabozorgi
,
S.
,
Shirkhorshidi
,
A. S.
, and
Wah
,
T. Y.
,
2015
, “
Time-Series Clustering—A Decade Review
,”
Inf. Syst.
,
53
, pp.
16
38
.
33.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.
You do not currently have access to this content.