Origami has provided various interesting applications in science and engineering. Appropriate representations and evaluation on crease patterns play an important role in developing an innovative origami structure with desired characteristics. However, this is generally a challenge encountered by scientists and engineers who introduce origami into various fields. As most practical origami structures contain repeated unit cells, graph products provide a suitable choice for the formation of crease patterns. Here, we will employ undirected and directed graph products as a tool for the representation of crease patterns and their corresponding truss frameworks of origami structures. Given that an origami crease pattern can be considered to be a set of directionless crease lines that satisfy the foldability condition, we demonstrate that the pattern can be exactly expressed by a specific graph product of independent graphs. It turns out that this integrated geometric-graph-theoretic method can be effectively implemented in the formation of different crease patterns and provide suitable numbering of nodes and elements. Furthermore, the presented method is useful for constructing the involved matrices and models of origami structures and thus enhances configuration processing for geometric, kinematic, or mechanical analysis on origami structures.

References

References
1.
Yasuda
,
H.
, and
Yang
,
J.
,
2015
, “
Reentrant Origami-Based Metamaterials With Negative Poisson's Ratio and Bistability
,”
Phys. Rev. Lett.
,
114
(
18
),
185502
.
2.
Brunck
,
V.
,
Lechenault
,
F.
,
Reid
,
A.
, and
Adda-Bedia
,
M.
,
2016
, “
Elastic Theory of Origami-Based Metamaterials
,”
Phys. Rev. E
,
93
(
3
),
033005
.
3.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
4.
You
,
Z.
,
2014
, “
Materials Design. Folding Structures out of Flat Materials
,”
Science
,
345
(
6197
), pp.
623
624
.
5.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
6.
Chen
,
Y.
,
Feng
,
H. J.
,
Ma
,
J. Y.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
472
(
2190
),
20150846
.
7.
Zhang
,
X.
,
Cheng
,
G.
,
You
,
Z.
, and
Zhang
,
H.
,
2007
, “
Energy Absorption of Axially Compressed Thin-Walled Square Tubes With Patterns
,”
Thin-Walled Struct.
,
45
(
9
), pp.
737
746
.
8.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), pp.
325
329
.
9.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
J. Int. Assoc. Shell Spat. Struct.
,
50
(
162
), pp.
173
179
.
10.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A Struct. Mater. Properties Microstruct. Proc.
,
419
(
1–2
), pp.
131
137
.
11.
Hunt
,
G. W.
, and
Ario
,
L.
,
2005
, “
TWIST Buckling and the Foldable Cylinder: An Exercise in Origami
,”
Int. J. Non-Linear Mech.
,
40
(
6
), pp.
833
843
.
12.
Kaveh
,
A.
,
2013
,
Optimal Analysis of Structures by Concepts of Symmetry and Regularity
,
Springer
,
New York
.
13.
Kaveh
,
A.
, and
Koohestani
,
K.
,
2008
, “
Graph Products for Configuration Processing of Space Structures
,”
Comput. Struct.
,
86
(
11
), pp.
1219
1231
.
14.
Kaveh
,
A.
, and
Rahami
,
H.
,
2005
, “
A Unified Method for Eigendecomposition of Graph Products
,”
Commun. Numer. Methods Eng.
,
21
(
7
), pp.
377
388
.
15.
Chen
,
Y.
, and
Feng
,
J.
,
2016
, “
Improved Symmetry Method for the Mobility of Regular Structures Using Graph Products
,”
J. Struct. Eng.
,
142
(
9
),
04016051
.
16.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
A Framework for the Symmetric Generalisation of the Miura-ori
,”
Int. J. Space Struct.
,
30
(
2
), pp.
141
152
.
17.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-ori
,”
Smart Mater. Struct.
,
24
(
8
),
085001
.
18.
Kaveh
,
A.
, and
Nikbakht
,
M.
,
2010
, “
Improved Group-Theoretical Method for Eigenvalue Problems of Special Symmetric Structures, Using Graph Theory
,”
Adv. Eng. Softw.
,
41
(
1
), pp.
22
31
.
19.
Kaveh
,
A.
, and
Alinejad
,
B.
,
2009
, “
A General Theorem for Adjacency Matrices of Graph Products and Application in Graph Partitioning for Parallel Computing
,”
Finite Elem. Anal. Des.
,
45
(
3
), pp.
149
155
.
20.
Sabidussi
,
G.
,
1959
, “
Graph Multiplication
,”
Math. Z.
,
72
(
1
), pp.
446
457
.
21.
Koohestani
,
K.
,
2012
, “
Exploitation of Symmetry in Graphs With Applications to Finite and Boundary Elements Analysis
,”
Int. J. Numer. Methods Eng.
,
90
(
2
), pp.
152
176
.
22.
Fan
,
R. K. C.
,
1997
,
Spectral Graph Theory
,
American Mathematical Society
,
New York
.
23.
Sareh
,
P.
, and
Guest
,
S. D.
,
2014
, “
Designing Symmetric Derivatives of the Miura-ori
,”
Adv. Archit. Geometry
, pp.
233
241
.
24.
Gattas
,
J. M.
,
Wu
,
W.
, and
You
,
Z.
,
2013
, “
Miura-Base Rigid Origami: Parameterizations of First-Level Derivative and Piecewise Geometries
,”
J. Mech. Des. Trans. ASME
,
135
(
11
),
0111011
.
25.
Tachi
,
T.
2010
. “
Geometric Considerations for the Design of Rigid Origami Structures
,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium
, Vol
12
,
Shanghai, China
, pp.
458
460
.
26.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Non-Isomorphic Symmetric Descendants of the Miura-ori
,”
Smart Mater. Struct.
,
24
(
8
),
085002
.
27.
Ackerman
,
E.
,
Fulek
,
R.
, and
Th
,
C. D.
,
2012
, “
Graphs That Admit Polyline Drawings With Few Crossing Angles
,”
SIAM J. Discrete Math.
,
26
(
1
), pp.
305
320
.
28.
Chen
,
Y.
,
Feng
,
J.
, and
Ren
,
Z.
,
2016
, “
Numerical Approach for Detecting Bifurcation Points of the Compatibility Paths of Symmetric Deployable Structures
,”
Mech. Res. Commun.
,
71
, pp.
7
15
.
29.
Chen
,
Y.
, and
Feng
,
J.
,
2012
, “
Folding of a Type of Deployable Origami Structures
,”
Int. J. Struct. Stability Dyn.
,
12
(
6
),
1250054
.
30.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.
31.
Sareh
,
P.
,
2014
,
Symmetric Descendants of the Miura-ori
,
University of Cambridge
,
Cambridge, UK
.
32.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2008
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University Press
,
Cambridge
.
33.
Akitaya
,
H. D.
,
Demaine
,
E.
,
Horiyama
,
T.
,
Hull
,
T.
,
Ku
,
J.
, and
Tachi
,
T.
,
2018
, “
Rigid Foldability is NP-Hard
,” arXiv:1812.01160.
34.
Chen
,
Y.
,
Feng
,
J.
,
Ma
,
R.
, and
Zhang
,
Y.
,
2015
, “
Efficient Symmetry Method for Calculating Integral Prestress Modes of Statically Indeterminate Cable-Strut Structures
,”
J. Struct. Eng.
,
141
(
10
),
04014240
.
35.
Chen
,
Y.
,
Fan
,
L.
, and
Feng
,
J.
,
2017
, “
Kinematic of Symmetric Deployable Scissor-Hinge Structures With Integral Mechanism Mode
,”
Comput. Struct.
,
191
, pp.
140
152
.
36.
Chen
,
Y.
,
Feng
,
J.
, and
Sun
,
Q.
,
2018
, “
Lower-Order Symmetric Mechanism Modes and Bifurcation Behavior of Deployable Bar Structures With Cyclic Symmetry
,”
Int. J. Solids Struct.
,
139–140
, pp.
1
14
.
37.
Silverberg
,
J. L.
,
Na
,
J. H.
,
Evans
,
A. A.
,
Liu
,
B.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hayward
,
R. C.
, and
Cohen
,
I.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(
4
), pp.
389
393
.
38.
Waitukaitis
,
S.
,
Menaut
,
R.
,
Chen
,
B.
, and
van Hecke
,
M.
,
2015
, “
Origami Multistability: From Single Vertices to Metasheets
,”
Phys. Rev. Lett.
,
114
(
5
),
055503
.
39.
Kresling
,
B.
2008
, “
Natural Twist Buckling in Shells: From the Hawkmoth's Bellows to the Deployable Kresling-Pattern and Cylindrical Miura-Ori
”,
6th International Conference on Computation of Shell & Spatial Structures (IASS-IACM 2008)
,
Ithaca, NY
,
May 28–31
.
40.
Cai
,
J.
,
Deng
,
X.
,
Zhang
,
Y.
,
Feng
,
J.
, and
Zhou
,
Y.
,
2016
, “
Folding Behavior of a Foldable Prismatic Mast With Kresling Origami Pattern
,”
J. Mech. Robot.-Trans. ASME
,
8
,
031004
.
41.
Chen
,
Y.
, and
Feng
,
J.
,
2012
, “
Generalized Eigenvalue Analysis of Symmetric Prestressed Structures Using Group Theory
,”
J. Comput. Civil Eng.
,
26
(
4
), pp.
488
497
.
42.
Chen
,
Y.
,
Sareh
,
P.
,
Feng
,
J.
, and
Sun
,
Q.
,
2017
, “
A Computational Method for Automated Detection of Engineering Structures With Cyclic Symmetries
,”
Comput. Struct.
,
191
, pp.
153
164
.
This content is only available via PDF.
You do not currently have access to this content.