Abstract

Morphing mechanisms need to alter stable structures to perform different tasks. Origami provides innovative methods for solving multidimensional deformation problems. However, origami structures struggle with poor load-bearing capacity due to the thinness of the panels and their complex deformation makes them difficult to drive effectively. This article transforms origami into a mechanism and proposes a series of two-degree-of-freedom overconstrained units from waterbomb. First, an origami-equivalent mechanism is proposed and transformed into a generalized mechanism capable of forming truss structures. Second, the kinematic pairs are reassigned to reduce the complexity of multi-degree-of-freedom execution. The kinematic pair configurations of the units under overconstraint are established. According to the general process of type synthesis, the case examples are analyzed in detail. The synthesis results are applied to the morphing wing skeleton mechanism. The kinematics of both the unit and the mechanism are derived using the D–H method. Finally, prototype experiments were conducted to evaluate the motion accuracy and stability of the mechanism.

References

1.
Li
,
Y.
, and
Pellegrino
,
S.
,
2020
, “
A Theory for the Design of Multi-stable Morphing Structures
,”
J. Mech. Phys. Solids
,
137
(
9
), p.
092302
.
2.
Lu
,
K. J.
, and
Kota
,
S.
,
2003
, “
Design of Compliant Mechanisms for Morphing Structural Shapes
,”
J. Intell. Mater. Syst. Struct.
,
14
(
6
), pp.
379
391
.
3.
Tian
,
Y.
,
Zhu
,
Y.
,
Zhao
,
Y.
,
Li
,
L.
,
Li
,
Y.
,
Wang
,
J.
, and
Xi
,
F.
,
2024
, “
Optimal Design and Analysis of a Deformable Mechanism for a Redundantly Driven Variable Swept Wing
,”
Aerosp. Sci. Technol.
,
146
, p.
108993
.
4.
Zhang
,
J.
,
Shaw
,
A. D.
,
Wang
,
C.
,
Gu
,
H.
,
Amoozgar
,
M.
,
Friswell
,
M. I.
, and
Woods
,
B. K.
,
2021
, “
Aeroelastic Model and Analysis of an Active Camber Morphing Wing
,”
Aerosp. Sci. Technol.
,
111
, p.
106534
.
5.
Hall
,
P. S. G.
,
Kelly
,
P.
,
Ebrahimi
,
J.
,
Hamid
,
E.
,
Ghanem
,
M. R.
, and
Herraiz-Martinez
,
F.
,
2009
, “
Reconfigurable Antenna Challenges for Future Radio Systems
,”
Proceedings of the 2009 3rd European Conference on Antennas and Propagation
,
Berlin
,
Mar. 23–27
, pp.
949
955
.
6.
Luo
,
Y.
,
Zhao
,
N.
,
Shen
,
Y.
, and
Li
,
P.
,
2023
, “
A Rigid Morphing Mechanism Enabled Earthworm-Like Crawling Robot
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011008
.
7.
Wagg
,
D.
,
Bond
,
I.
,
Weaver
,
P.
, and
Friswell
,
M.
,
2008
,
Adaptive Structures: Engineering Applications
,
John Wiley & Sons
,
New York
, pp.
89
135
.
8.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
9.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.
10.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2016
, “
A Novel 4-DoF Origami Grasper With an SMA-Actuation System for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
484
498
.
11.
Zuliani
,
F.
,
Liu
,
C.
,
Paik
,
J.
, and
Felton
,
S. M.
,
2018
, “
Minimally Actuated Transformation of Origami Machines
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1426
1433
.
12.
Zhang
,
Q.
,
Fang
,
H.
, and
Xu
,
J.
,
2021
, “
Yoshimura-Origami Based Earthworm-Like Robot With 3-Dimensional Locomotion Capability
,”
Front. Rob. AI
,
8
, p.
738214
.
13.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
14.
Greenberg
,
H. C.
,
Gong
,
M. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
217
225
.
15.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.
16.
Zhai
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2018
, “
Origami-Inspired, On-Demand Deployable and Collapsible Mechanical Metamaterials With Tunable Stiffness
,”
Proc. Natl. Acad. Sci. USA
,
115
(
9
), pp.
2032
2037
.
17.
Kamrava
,
S.
,
Ghosh
,
R.
,
Xiong
,
J.
,
Felton
,
S. M.
, and
Vaziri
,
A.
,
2019
, “
Origami-Equivalent Compliant Mechanism
,”
Appl. Phys. Lett.
,
115
(
17
), p.
171904
.
18.
Zhang
,
Z.
,
Li
,
J.
,
Wang
,
C.
,
Guang
,
C.
,
Ni
,
Y.
, and
Zhang
,
D.
,
2024
, “
Design and Optimization of Kirigami-Inspired Rotational Parabolic Deployable Structures
,”
Int. J. Mech. Sci.
,
263
, p.
108788
.
19.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2015
, “
Origami Actuator Design and Networking Through Crease Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091401
.
20.
Kwok
,
T. H.
,
2021
, “
Geometry-Based Thick Origami Simulation
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061701
.
21.
Wang
,
S.
,
Liang
,
D.
,
Huang
,
H.
,
Li
,
B.
,
Liu
,
R.
, and
Xi
,
F.
,
2022
, “
Actuation Arrangement of Rigid Foldable Waterbomb Origami
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
064501
.
22.
Hervé
,
J. M.
,
1978
, “
Analyse Structurelle des Mécanismes par Groupe des Déplacements
,”
Mech. Mach. Theory
,
13
(
4
), pp.
437
450
.
23.
Huang
,
Z.
,
Zhao
,
Y.
, and
Zhao
,
T.
,
2006
,
Advanced Spatial Mechanism
,
Higher Education Press
,
Beijing
, pp.
346
366
.
24.
Yang
,
T.
,
2004
,
Topology Structure Design of Robot Mechanisms
,
China Machine Press
,
Beijing
, pp.
20
72
.
25.
Gao
,
F.
,
Zhang
,
Y.
, and
Li
,
W.
,
2005
, “
Type Synthesis of 3-DoF Reducible Translational Mechanisms
,”
Robotica
,
23
(
2
), pp.
239
245
.
26.
Kong
,
X.
,
2014
, “
Type Synthesis of Single-Loop Over-Constrained 6r Spatial Mechanisms for Circular Translation
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041016
.
27.
Fang
,
Y.
, and
Tsai
,
L. W.
,
2004
, “
Enumeration of a Class of Overconstrained Mechanisms Using the Theory of Reciprocal Screws
,”
Mech. Mach. Theory
,
39
(
11
), pp.
1175
1187
.
28.
Deng
,
Z.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031006
.
29.
Huang
,
H.
,
Deng
,
Z.
, and
Li
,
B.
,
2012
, “
Mobile Assemblies of Large Deployable Mechanisms
,”
J. Space Eng.
,
5
(
1
), pp.
1
14
.
30.
Song
,
Y.
,
Ma
,
X.
, and
Dai
,
J. S.
,
2019
, “
A Novel 6R Metamorphic Mechanism With Eight Motion Branches and Multiple Furcation Points
,”
Mech. Mach. Theory
,
142
, p.
103598
.
31.
Shi
,
C.
,
Guo
,
H.
,
Zhang
,
S.
,
Liu
,
R.
, and
Deng
,
Z.
,
2021
, “
Configuration Synthesis of Linear Foldable Over-Constrained Deployable Unit Based on Screw Theory
,”
Mech. Mach. Theory
,
156
, p.
104163
.
32.
Song
,
X.
,
Deng
,
Z.
,
Guo
,
H.
,
Liu
,
R.
,
Li
,
L.
, and
Liu
,
R.
,
2017
, “
Networking of Bennett Linkages and Its Application on Deployable Parabolic Cylindrical Antenna
,”
Mech. Mach. Theory
,
109
, pp.
95
125
.
33.
Yu
,
J.
,
Li
,
S.
, and
Qiu
,
C.
,
2013
, “
An Analytical Approach for Synthesizing Line Actuation Spaces of Parallel Flexure Mechanisms
,”
ASME J. Mech. Des.
,
135
(
12
), p.
124501
.
You do not currently have access to this content.