Abstract

Mechanical metamaterials have garnered considerable interest for their enhanced properties, such as high strength-to-weight ratios, remarkable resilience, and superior energy absorption capabilities. Despite their advantages, localized stress concentrations in additively manufactured metamaterial geometries remain a challenge. In this article, we propose a bioinspired design optimization framework to achieve metamaterials with uniformly distributed stresses. The framework uses the maximum material utilization (MMU) metric to quantify and uniformly distribute stresses in metamaterial geometries. Optimization begins with the selection of an initial conceptual design from a qualitative library of planar metamaterials previously developed by the authors. Once we have a conceptual design, we optimize it using the MMU metric for both size and shape. We assessed our optimization methods on two planar auxetic metamaterials: negative Poisson’s ratio microstructures with low shear (NPLS) and negative Poisson’s ratio microstructures with high shear (NPHS). The optimized designs achieved a uniform stress distribution across the entire topology, at both the microstructural and material levels. We highlight the efficacy of our design methodology by using numerical simulations and experiments. In addition, we demonstrate the utility of stress-optimized metamaterials by conducting numerical dynamic impact tests on optimized and unoptimized NPLS lattices. The optimized lattice absorbed more energy than its unoptimized counterpart. This study paves the way for computationally inexpensive, insightful, and stress-based design optimization of metamaterials.

References

1.
Bertoldi
,
K.
,
Reis
,
P. M.
,
Willshaw
,
S.
, and
Mullin
,
T.
,
2010
, “
Negative Poisson’s Ratio Behavior Induced by an Elastic Instability
,”
Adv. Mater.
,
22
(
1
), pp.
361
366
.
2.
Mousanezhad
,
D.
,
Babaee
,
S.
,
Ebrahimi
,
H.
,
Ghosh
,
R.
,
Hamouda
,
A. S.
,
Bertoldi
,
K.
, and
Vaziri
,
A.
,
2015
,
Hierarchical Honeycomb Auxetic Metamaterials
,
Nature Publishing Group
,
London, UK
.
3.
Rafsanjani
,
A.
, and
Pasini
,
D.
,
2016
, “
Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs
,”
Extreme Mech. Lett.
,
9
(
12
), pp.
291
296
.
4.
Qu
,
J.
,
Kadic
,
M.
,
Naber
,
A.
, and
Wegener
,
M.
,
2017
, “
Micro-Structured Two-Component 3D Metamaterials With Negative Thermal-Expansion Coefficient From Positive Constituents
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.
5.
Wu
,
L.
,
Li
,
B.
, and
Zhou
,
J.
,
2016
, “
Isotropic Negative Thermal Expansion Metamaterials
,”
ACS Appl. Mater. Interfaces
,
8
(
7
), pp.
17721
17727
.
6.
Wang
,
Q.
,
Jackson
,
J. A.
,
Ge
,
Q.
,
Hopkins
,
J. B.
,
Spadaccini
,
C. M.
, and
Fang
,
N. X.
,
2016
, “
Lightweight Mechanical Metamaterials With Tunable Negative Thermal Expansion
,”
Phys. Rev. Lett.
,
117
(
10
), p.
175901
.
7.
Qu
,
J.
,
Gerber
,
A.
,
Mayer
,
F.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2017
, “
Experiments on Metamaterials With Negative Effective Static Compressibility
,”
Phys. Rev. X
,
7
(
12
), p.
041060
.
8.
Nicolaou
,
Z. G.
, and
Motter
,
A. E.
,
2012
, “
Mechanical Metamaterials With Negative Compressibility Transitions
,”
Nat. Mater.
,
11
(
5
), pp.
608
613
.
9.
Qu
,
J.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2017
, “
Poroelastic Metamaterials With Negative Effective Static Compressibility
,”
Appl. Phys. Lett.
,
110
(
4
), p.
171901
.
10.
Brandenbourger
,
M.
,
Locsin
,
X.
,
Lerner
,
E.
, and
Coulais
,
C.
,
2019
, “
Non-Reciprocal Robotic Metamaterials
,”
Nat. Commun.
,
10
(
10
), pp.
1
8
.
11.
Librandi
,
G.
,
Tubaldi
,
E.
, and
Bertoldi
,
K.
,
2021
, “
Programming Nonreciprocity and Reversibility in Multistable Mechanical Metamaterials
,”
Nat. Commun.
,
12
(
6
), pp.
1
9
.
12.
Yasuda
,
H.
,
Korpas
,
L. M.
, and
Raney
,
J. R.
,
2020
, “
Transition Waves and Formation of Domain Walls in Multistable Mechanical Metamaterials
,”
Phys. Rev. Appl.
,
13
(
5
), p.
054067
.
13.
Korpas
,
L. M.
,
Yin
,
R.
,
Yasuda
,
H.
, and
Raney
,
J. R.
,
2021
, “
Temperature-Responsive Multistable Metamaterials
,”
ACS Appl. Mater. Interfaces
,
13
(
7
), pp.
31163
31170
.
14.
Pashine
,
N.
,
Wang
,
D.
,
Zhang
,
J.
,
Patiballa
,
S. K.
,
Witthaus
,
S.
,
Shattuck
,
M. D.
,
O’Hern
,
C. S.
, and
Kramer-Bottiglio
,
R.
,
2023
, “
Tessellated Granular Metamaterials With Tunable Elastic Moduli
,”
Extreme Mech. Lett.
,
63
, p.
102055
.
15.
Yuan
,
S.
,
Chua
,
C. K.
, and
Zhou
,
K.
,
2019
, “
3D-Printed Mechanical Metamaterials With High Energy Absorption
,”
Adv. Mater. Technol.
,
4
(
3
), p.
1800419
.
16.
Mohsenizadeh
,
M.
,
Gasbarri
,
F.
,
Munther
,
M.
,
Beheshti
,
A.
, and
Davami
,
K.
,
2018
, “
Additively-Manufactured Lightweight Metamaterials for Energy Absorption
,”
Mater. Des.
,
139
(
2
), pp.
521
530
.
17.
Collet
,
M.
,
Noël
,
L.
,
Bruggi
,
M.
, and
Duysinx
,
P.
,
2018
, “
Topology Optimization for Microstructural Design Under Stress Constraints
,”
Struct. Multidiscipl. Optim.
,
58
(
12
), pp.
2677
2695
.
18.
Alacoque
,
L.
,
Watkins
,
R. T.
, and
Tamijani
,
A. Y.
,
2021
, “
Stress-Based and Robust Topology Optimization for Thermoelastic Multi-Material Periodic Microstructures
,”
Comput. Methods Appl. Mech. Eng.
,
379
(
6
), p.
113749
.
19.
Lu
,
Y.
, and
Wang
,
Y.
,
2022
, “
Structural Optimization of Metamaterials Based on Periodic Surface Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
395
, p.
115057
.
20.
Holmberg
,
E.
,
Torstenfelt
,
B.
, and
Klarbring
,
A.
,
2013
, “
Stress Constrained Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
48
(
7
), pp.
33
47
.
21.
Fernandes
,
R. R.
, and
Tamijani
,
A. Y.
,
2021
, “
Design Optimization of Lattice Structures With Stress Constraints
,”
Mater. Des.
,
210
(
11
), p.
110026
.
22.
Vogel
,
S.
,
2011
,
Comparative Biomechanics: Life’s Physical World
, 9,
Princeton University Press
,
Princeton, NJ
.
23.
Sivanagendra
,
P.
, and
Ananthasuresh
,
G. K.
,
2009
, “
Size Optimization of a Cantilever Beam Under Deformation-Dependent Loads With Application to Wheat Stalks
,”
Struct. Multidiscipl. Optim.
,
39
(
9
), pp.
327
336
.
24.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2013
, “
A Metric to Evaluate and Synthesize Distributed Compliant Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
11004
.
25.
Patiballa
,
S. K.
, and
Krishnan
,
G.
,
2017
, “
Estimating Optimized Stress Bounds in Early Stage Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
139
(
6
), p.
062302
.
26.
Patiballa
,
S. K.
, and
Krishnan
,
G.
,
2021
, “
A Sequential Two-Step Design Framework for Deformable Mechanical Metamaterials
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
,
Virtual, Online
,
Nov. 16–19
, Vol.
12
, p.
2
.
27.
Patiballa
,
S. K.
, and
Krishnan
,
G.
,
2018
, “
Qualitative Analysis and Conceptual Design of Planar Metamaterials With Negative Poisson’s Ratio
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021006
.
28.
Zhang
,
W.
,
Dai
,
G.
,
Wang
,
F.
,
Sun
,
S.
, and
Bassir
,
H.
,
2007
, “
Using Strain Energy-Based Prediction of Effective Elastic Properties in Topology Optimization of Material Microstructures
,”
Acta Mech. Sin.
,
23
(
1
), pp.
77
89
.
29.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2013
, “
A Kinetostatic Formulation for Load-Flow Visualization in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021007
.
30.
Patiballa
,
S.
, and
Krishnan
,
G.
,
2017
, “
Qualitative Analysis and Design of Mechanical Metamaterials
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Cleveland, OH
,
Aug. 6–9
, Vol.
5A-2017
, p.
11
.
31.
Patiballa
,
S.
,
Ranganath
,
R. K.
,
Uchikata
,
K.
, and
Krishnan
,
G.
,
2018
, “
A Conceptual Design Tool for Synthesis of Spatial Compliant and Shape Morphing Mechanisms
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, Vol.
5B-2018
, p.
11
.
32.
Patiballa
,
S. K.
,
Satheeshbabu
,
S.
, and
Krishnan
,
G.
,
2019
, “
Load-Flow Based Design of Compliant Mechanisms With Embedded Soft Actuators
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol.
5A-2019
, p.
11
.
33.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2005
, “
Function-Transformation Methods for Multi-Objective Optimization
,”
Eng. Optim.
,
37
(
9
), pp.
551
570
.
34.
Rao
,
S. S.
, and
Freiheit
,
T. I.
,
1991
, “
A Modified Game Theory Approach to Multiobjective Optimization
,”
ASME J. Mech. Des.
,
113
(
9
), pp.
286
291
.
35.
Koski
,
J.
, and
Silvennoinen
,
R.
,
1987
, “
Norm Methods and Partial Weighting in Multicriterion Optimization of Structures
,”
Int. J. Numer. Methods Eng.
,
24
(
6
), pp.
1101
1121
.
36.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
37.
Hibbeler
,
R. C.
, and
Tan
,
K. -H.
,
2006
,
Structural Analysis
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
38.
Eslami
,
M. R.
,
2018
,
Buckling and Postbuckling of Beams, Plates, and Shells
, Vol.
1
,
Springer International Publishing
,
Cham, Switzerland
.
You do not currently have access to this content.