Abstract

Parallel robot is important in high-precision application. The current studies focus on the high-precision robot with light payload capability. It is insufficient for the support of a space optical telescope. When designing a robot with a large payload, performance redundancy of the robot needs to be reduced because the high payload and precision will cause high cost. In this paper, a six degrees-of-freedom heavy-duty and high-precision 3–3 orthogonal parallel robot with flexible hinges is presented. A performance redundance minimization-based type selection method is proposed by the isotropy comparison. The performance of between Stewart and orthogonal mechanisms is compared based on local transmission index, force and torque payload isotropy, displacement, and rotation accuracy isotropy. A performance mean maximization and standard deviation minimum dimensional optimization method is proposed. Two new indexes named payload distribution index and accuracy distribution index are proposed to evaluate the performance redundancy of the mechanism. The mechanism parameters are designed based on performance atlas using workspace volume index, global transmission index, global payload index, global accuracy index, payload distribution index, and accuracy distribution index. A new modeling method considering the nun-functional motion of spherical joints with stiffness compensation is proposed. Modeling and control experiments on the robot demonstrate the effectiveness of the proposed method.

References

1.
Li
,
Q.
,
Chen
,
Q.
,
Wu
,
C.
, and
Huang
,
Z.
,
2013
, “
Geometrical Distribution of Rotational Axes of 3-[P][S] Parallel Mechanisms
,”
Mech. Mach. Theory
,
65
, pp.
46
57
.
2.
Li
,
Q.
, and
Hervé
,
J. M.
,
2014
, “
Type Synthesis of 3-DOF RPR-Equivalent Parallel Mechanisms
,”
IEEE Trans. Rob..
,
30
(
6
), pp.
1333
1343
.
3.
Gosselin
,
C.
,
1990
, “
Determination of the Workspace of 6-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
331
336
.
4.
Brinker
,
J.
,
Corves
,
B.
, and
Takeda
,
Y.
,
2018
, “
Kinematic Performance Evaluation of High-Speed Delta Parallel Robots Based on Motion/Force Transmission Indices
,”
Mech. Mach. Theory
,
125
, pp.
111
125
.
5.
Sun
,
T.
,
Lian
,
B.
,
Yang
,
S.
, and
Song
,
Y.
,
2020
, “
Kinematic Calibration of Serial and Parallel Robots Based on Finite and Instantaneous Screw Theory
,”
IEEE Trans. Rob.
,
36
(
3
), pp.
816
834
.
6.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2004
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
7.
Kuo
,
C.-H.
, and
Dai
,
J. S.
,
2021
, “
Structure Synthesis of a Class of Parallel Manipulators With Fully Decoupled Projective Motion
,”
ASME J. Mech. Rob. Trans.
,
13
(
3
), p.
031011
.
8.
Li
,
T. M.
, and
Payandeh
,
S.
,
2002
, “
Design of Spherical Parallel Mechanisms for Application to Laparoscopic Surgery
,”
Robotica
,
20
(
2
), pp.
133
138
.
9.
Dalvand
,
M. M.
, and
Shirinzadeh
,
B.
,
2013
, “
Motion Control Analysis of a Parallel Robot Assisted Minimally Invasive Surgery/Microsurgery System (PRAMiSS)
,”
Rob. Comput. Integr. Manuf.
,
29
(
2
), pp.
318
327
.
10.
Xie
,
F.
,
Liu
,
X.
, and
Wang
,
J.
,
2016
, “
Conceptual Design and Optimization of a 3-DoF Parallel Mechanism for a Turbine Blade Grinding Machine
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
230
(
3
), pp.
406
413
.
11.
Wang
,
L.
,
Xie
,
F.
,
Liu
,
X.
, and
Wang
,
J.
,
2011
, “
Kinematic Calibration of the 3-DOF Parallel Module of a 5-Axis Hybrid Milling Machine
,”
Robotica
,
29
(
4
), pp.
535
546
.
12.
Xie
,
F.
,
Liu
,
X.
,
Wang
,
J.
, and
Wabner
,
M.
,
2017
, “
Kinematic Optimization of a Five Degrees-of-Freedom Spatial Parallel Mechanism With Large Orientational Workspace
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051005
.
13.
Han
,
Y.
,
Guo
,
W.
,
Peng
,
Z.
,
He
,
M.
,
Gao
,
F.
, and
Yang
,
J.
,
2021
, “
Dimensional Synthesis of the Reconfigurable Legged Mobile Lander With Multi-Mode and Complex Mechanism Topology
,”
Mech. Mach. Theory
,
155
, p.
104097
.
14.
Han
,
Y.
,
Guo
,
W.
,
Gao
,
F.
, and
Yang
,
J.
,
2019
, “
A New Dimension Design Method for the Cantilever-Type Legged Lander Based on Truss-Mechanism Transformation
,”
Mech. Mach. Theory
,
142
, p.
103611
.
15.
Mynderse
,
J. A.
, and
Chiu
,
G. T. C.
,
2016
, “
Two-Degree-of-Freedom Hysteresis Compensation for a Dynamic Mirror Actuator
,”
IEEE/ASME Trans Mech.
,
21
(
1
), pp.
29
37
.
16.
Park
,
W.
,
Pak
,
S.
,
Kim
,
G. H.
,
Lee
,
S.
,
Chang
,
S.
,
Kim
,
S.
,
Jeong
,
B.
,
Brendel
,
T. J.
, and
Kim
,
D. W.
,
2020
, “
Transformable Reflective Telescope for Optical Testing and Education
,”
Appl. Opt.
,
59
(
18
), pp.
5581
5588
.
17.
Ling
,
M.
, and
Zhang
,
X.
,
2021
, “
Coupled Dynamic Modeling of Piezo-Actuated Compliant Mechanisms Subjected to External Loads
,”
Mech. Mach. Theory
,
160
, p.
104283
.
18.
Chen
,
W.
,
Zhang
,
X.
,
Li
,
H.
,
Wei
,
J.
, and
Fatikow
,
S.
,
2017
, “
Nonlinear Analysis and Optimal Design of a Novel Piezoelectric-Driven Compliant Microgripper
,”
Mech. Mach. Theory
,
118
, pp.
32
52
.
19.
Mishra
,
J. P.
,
Xu
,
Q.
,
Yu
,
X.
, and
Jalili
,
M.
,
2018
, “
Precision Position Tracking for Piezoelectric-Driven Motion System Using Continuous Third-Order Sliding Mode Control
,”
IEEE/ASME Trans. Mech.
,
23
(
4
), pp.
1521
1531
.
20.
Gu
,
G.-Y.
,
Zhu
,
L.-M.
, and
Su
,
C.-Y.
,
2014
, “
High-Precision Control of Piezoelectric Nanopositioning Stages Using Hysteresis Compensator and Disturbance Observer
,”
Smart Mater. Struct.
,
23
(
10
).
21.
Xu
,
Q.
,
2017
, “
Continuous Integral Terminal Third-Order Sliding Mode Motion Control for Piezoelectric Nanopositioning System
,”
IEEE/ASME Trans. Mech.
,
22
(
4
), pp.
1828
1838
.
22.
Ghafarian
,
M.
,
Shirinzadeh
,
B.
,
Al-Jodah
,
A.
, and
Das
,
T. K.
,
2020
, “
Adaptive Fuzzy Sliding Mode Control for High-Precision Motion Tracking of a Multi-DOF Micro/Nano Manipulator
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4313
4320
.
23.
Fleming
,
A. J.
, and
Yong
,
Y. K.
,
2017
, “
An Ultrathin Monolithic XY Nanopositioning Stage Constructed From a Single Sheet of Piezoelectric Material
,”
IEEE/ASME Trans. Mech.
,
22
(
6
), pp.
2611
2618
.
24.
Wang
,
R.
, and
Zhang
,
X.
,
2018
, “
Parameters Optimization and Experiment of A Planar Parallel 3-DOF Nanopositioning System
,”
IEEE Trans. Ind. Electron.
,
65
(
3
), pp.
2388
2397
.
25.
Yun
,
Y.
, and
Li
,
Y.
,
2010
, “
Design and Analysis of a Novel 6-DOF Redundant Actuated Parallel Robot With Compliant Hinges for High Precision Positioning
,”
Nonlinear Dyn.
,
61
(
4
), pp.
829
845
.
26.
Yu
,
J.
,
Xie
,
Y.
,
Li
,
Z.
, and
Hao
,
G.
,
2015
, “
Design and Experimental Testing of an Improved Large-Range Decoupled XY Compliant Parallel Micromanipulator
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
044503
.
27.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
645
657
.
28.
Feliu-Talegon
,
D.
, and
Feliu-Batlle
,
V.
,
2022
, “
Control of Very Lightweight 2-DOF Single-Link Flexible Robots Robust to Strain Gauge Sensor Disturbances: A Fractional-Order Approach
,”
IEEE Trans. Control Syst. Technol.
,
30
(
1
), pp.
14
29
.
29.
Yue
,
Y.
,
Gao
,
F.
,
Zhao
,
X.
, and
Ge
,
Q. J.
,
2010
, “
Relationship Among Input-Force, Payload, Stiffness and Displacement of a 3-DOF Perpendicular Parallel Micro-Manipulator
,”
Mech. Mach. Theory
,
45
(
5
), pp.
756
771
.
30.
Bhagat
,
U.
,
Shirinzadeh
,
B.
,
Clark
,
L.
,
Chea
,
P.
,
Qin
,
Y.
,
Tian
,
Y.
,
Zhang
,
D. J. M.
, and
Theory
,
M.
,
2014
, “
Design and Analysis of a Novel Flexure-Based 3-DOF Mechanism
,”
Mech. Mach. Theory
,
74
, pp.
173
187
.
31.
Huang
,
Z.
,
Lai
,
X.
,
Zhang
,
P.
,
Meng
,
Q.
, and
Wu
,
M.
,
2020
, “
A General Control Strategy for Planar 3-DoF Underactuated Manipulators With One Passive Joint
,”
Inf. Sci.
,
534
, pp.
139
153
.
32.
Yue
,
Y.
,
Gao
,
F.
,
Zhao
,
X.
, and
Ge
,
Q. J.
,
2010
, “
Relationship Among Input-Force, Payload, Stiffness, and Displacement of a 6-DOF Perpendicular Parallel Micromanipulator
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011007
.
33.
Dong
,
Y.
,
Gao
,
F.
, and
Yue
,
Y.
,
2015
, “
Modeling and Prototype Experiment of a Six-DOF Parallel Micro-Manipulator With Nano-Scale Accuracy
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
229
(
14
), pp.
2611
2625
.
34.
Ling
,
M.
,
Zhang
,
C.
, and
Chen
,
L.
,
2022
, “
Optimized Design of a Compact Multi-Stage Displacement Amplification Mechanism With Enhanced Efficiency
,”
Precis. Eng.
,
77
, pp.
77
89
.
35.
Ling
,
M.
,
Cao
,
J.
,
Jiang
,
Z.
,
Zeng
,
M.
, and
Li
,
Q.
,
2019
, “
Optimal Design of a Piezo-Actuated 2-DOF Millimeter-Range Monolithic Flexure Mechanism With a Pseudo-Static Model
,”
Mech. Syst. Signal Process
,
115
, pp.
120
131
.
36.
Jang
,
G. W.
,
Kim
,
M. J.
, and
Kim
,
Y. Y.
,
2009
, “
Design Optimization of Compliant Mechanisms Consisting of Standardized Elements
,”
ASME J. Mech. Des.
,
131
(
12
), p.
121006
.
37.
Liu
,
X.
,
Wang
,
J.
, and
Pritschow
,
G.
,
2006
, “
Performance Atlases and Optimum Design of Planar 5R Symmetrical Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
2
), pp.
119
144
.
38.
Xie
,
F.
,
Liu
,
X.
,
Luo
,
X.
, and
Wabner
,
M.
,
2016
, “
Mobility, Singularity, and Kinematics Analyses of a Novel Spatial Parallel Mechanism
,”
ASME J. Mech. Rob. Trans.
,
8
(
6
), p.
061022
.
39.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des. Trans.
,
113
(
3
), pp.
220
226
.
40.
Merlet
,
J. P.
,
2007
, “
Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots
,”
Proceedings of the 12th International Symposium on Robotics Research (ISRR)
,
Berlin, Heidelberg
,
July 10–12
, pp.
175
184
.
41.
Chen
,
G.
,
Han
,
Q.
, and
Jin
,
K.
,
2020
, “
A Fully Compliant Tristable Mechanism Employing Both Tensural and Compresural Segments
,”
ASME J. Mech. Rob. Trans.
,
12
(
1
), p.
011003
.
42.
Chen
,
G.
,
Ma
,
F.
,
Bai
,
R.
,
Zhu
,
W.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2021
, “
An Energy-Based Framework for Nonlinear Kinetostatic Modeling of Compliant Mechanisms Utilizing Beam Flexures
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
6
), p.
064501
.
43.
Zhang
,
X.
,
Li
,
Z.
,
Su
,
C.-Y.
,
Lin
,
Y.
, and
Fu
,
Y.
,
2016
, “
Implementable Adaptive Inverse Control of Hysteretic Systems via Output Feedback With Application to Piezoelectric Positioning Stages
,”
IEEE Trans. Ind. Electron.
,
63
(
9
), pp.
5733
5743
.
44.
Tao
,
Y.
,
Li
,
H.
, and
Zhu
,
L.
,
2021
, “
Time/Space-Separation-Based Gaussian Process Modeling for the Cross-Coupling Effect of a 2-DOF Nanopositioning Stage
,”
IEEE/ASME Trans. Mech.
,
26
(
4
), pp.
2186
2194
.
45.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Modeling and Performance Evaluation of a Flexure-Based XY Parallel Micromanipulator
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2127
2152
.
46.
Dong
,
Y.
,
Gao
,
F.
, and
Yue
,
Y.
,
2016
, “
Modeling and Experimental Study of a Novel 3-RPR Parallel Micro-Manipulator
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
115
124
.
47.
Li
,
Y.
, and
Wu
,
Z.
,
2016
, “
Design, Analysis and Simulation of a Novel 3-DOF Translational Micromanipulator Based on the PRB Model
,”
Mech. Mach. Theory
,
100
, pp.
235
258
.
48.
Yu
,
Y.-Q.
,
Feng
,
Z.-L.
, and
Xu
,
Q.-P.
,
2012
, “
A Pseudo-Rigid-Body 2R Model of Flexural Beam in Compliant Mechanisms
,”
Mech. Mach. Theory
,
55
, pp.
18
33
.
49.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2004
, “
Two Microcantilever Designs: Lumped-Parameter Model for Static and Modal Analysis
,”
J. Microelectromech. Syst.
,
13
(
1
), pp.
41
50
.
50.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Su
,
H.
,
2009
, “
The Modeling of Cartwheel Flexural Hinges
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1900
1909
.
51.
Qi
,
C.
,
Lin
,
J.
,
Liu
,
X.
,
Gao
,
F.
,
Yue
,
Y.
,
Hu
,
Y.
, and
Wei
,
B.
,
2023
, “
A Modeling Method for a 6-SPS Perpendicular Parallel Micro-Manipulation Robot Considering the Motion in Multiple Nonfunctional Directions and Nonlinear Hysteresis
,”
ASME J. Mech. Des.
,
145
(
5
), p.
053301
.
52.
Cao
,
R.
,
Gao
,
F.
,
Zhang
,
Y.
, and
Pan
,
D.
,
2015
, “
A Key Point Dimensional Design Method of a 6-DOF Parallel Manipulator for a Given Workspace
,”
Mech. Mach. Theory
,
85
(
3
), pp.
1
13
.
53.
Stewart
,
D.
,
1966
, “
A Platform With Six Degrees of Freedom: A New Form of Mechanical Linkage Which Enables a Platform to Move Simultaneously in All Six Degrees of Freedom Developed by Elliott-Automation
,”
Aircr. Eng. Aerosp. Technol.
,
38
(
4
), pp.
30
35
.
54.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
You do not currently have access to this content.