Abstract

This article presents a design solution for a new expansion screw based on compliant mechanisms. The new expansion screw applies distributed compliant mechanisms, rhombus amplification mechanisms, and right circular flexure hinges to it. The distributed compliant mechanism realizes the contraction, the rhombus amplification mechanism realizes its expansion and fixation, and the right circular flexure hinges are used to reduce friction. The forces analysis of the new expansion screw when it works is used to calculate its maximum load-bearing capacity. A series of simulations and experiments are carried out to demonstrate the practicability and efficiency of the new expansion screw. In experiments, the new expansion screws using acrylonitrile butadiene styrene (ABS) and nylon plastic are fabricated, respectively, and the expansion screws using nylon plastic already available on the market are set as a comparison. The experimental results indicate that the structure of the new expansion screws is better than the existing expansion screws on the market, and the corresponding overall bearing capacity is more than double than the expansion screw already available on the market. The new expansion screw realizes a significant increase in its bearing capacity and shows a strong application prospect.

References

1.
Feng
,
Y.
,
Liu
,
S.
,
Zhang
,
S.
,
Wang
,
X.
,
Yi
,
M.
,
Yu
,
M.
,
Zhou
,
C.
, and
Wang
,
C.
,
2023
, “
Construction of Dendritic Polymers on Carbon Fiber Surfaces to Improve the Interfacial Bonding of Carbon Fiber/Silicone Rubber Composites
,”
Colloids Surf., A
,
676
(Part A), p.
132108
.
2.
Alam
,
P.
,
Mamalis
,
D.
,
Robert
,
C.
,
Floreani
,
C.
, and
Ó Brádaigh
,
C. M.
,
2019
, “
The Fatigue of Carbon Fibre Reinforced Plastics—A Review
,”
Compos. Part B: Eng.
,
166
, pp.
555
579
.
3.
Du
,
J.
,
Zhang
,
H.
,
Geng
,
Y.
,
Ming
,
W.
,
He
,
W.
,
Ma
,
J.
,
Cao
,
Y.
,
Li
,
X.
, and
Liu
,
K.
,
2019
, “
A Review on Machining of Carbon Fiber Reinforced Ceramic Matrix Composites
,”
Ceram. Int.
,
45
(
15
), pp.
18155
18166
.
4.
Maeda
,
Y.
, and
Iwasaki
,
M.
,
2013
, “
Initial Friction Compensation Using Rheology-Based Rolling Friction Model in Fast and Precise Positioning
,”
IEEE Trans. Ind. Electron.
,
60
(
9
), pp.
3865
3876
.
5.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
, p.
103622
.
6.
Howell
,
L.
,
Magleby
,
S.
,
Olsen
,
B.
, and
Wiley
,
J.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley Online Library
.
7.
Zhu
,
W.-L.
,
Zhu
,
Z.
,
Guo
,
P.
, and
Ju
,
B.-F.
,
2018
, “
A Novel Hybrid Actuation Mechanism Based XY Nanopositioning Stage With Totally Decoupled Kinematics
,”
Mech. Syst. Signal Process.
,
99
, pp.
747
759
.
8.
Ling
,
M.
,
Cao
,
J.
,
Jiang
,
Z.
,
Zeng
,
M.
, and
Li
,
Q.
,
2019
, “
Optimal Design of a Piezo-Actuated 2-DOF Millimeter-Range Monolithic Flexure Mechanism With a Pseudo-Static Model
,”
Mech. Syst. Signal Process.
,
115
, pp.
120
131
.
9.
Abhijit
,
T.
, and
Prasanna
,
G.
,
2022
, “
Design and Analysis of Ultra-Precise Large Range Linear Motion Platforms Using Compliant Mechanism
,”
IEEE Access
,
10
, pp.
94321
94336
.
10.
Choi
,
S.
,
Kim
,
D.
,
Kim
,
Y.
,
Kang
,
Y.
,
Yoon
,
J.
, and
Yun
,
D.
,
2023
, “
A Novel Compliance Compensator Capable of Measuring Six-Axis Force/Torque and Displacement for a Robotic Assembly
,”
IEEE/ASME Trans. Mechatron.
,
29
(
1
), pp.
1
12
.
11.
Liu
,
M.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2017
, “
Design and Analysis of a Multi-Notched Flexure Hinge for Compliant Mechanisms
,”
Precis. Eng.
,
48
, pp.
292
304
.
12.
Ling
,
M.
,
Zhu
,
J.
,
Wu
,
S.
,
Yuan
,
L.
, and
Zhang
,
X.
,
2025
, “
A Dynamic Compliance Matrix Method for Modeling Compliant Mechanisms
,”
Int. J. Mech. Sci.
,
287
, p.
109957
.
13.
Chen
,
F.
,
Gao
,
Y.
,
Dong
,
W.
, and
Du
,
Z.
,
2021
, “
Design and Control of a Passive Compliant Piezo-Actuated Micro-Gripper With Hybrid Flexure Hinges
,”
IEEE Trans. Ind. Electron.
,
68
(
11
), pp.
11168
11177
.
14.
Huo
,
Z.
,
Tian
,
Y.
,
Wang
,
F.
,
Zhang
,
W.
,
Shi
,
B.
, and
Zhang
,
D.
,
2022
, “
A Dual-Driven High Precision Rotary Platform Based on Stick-Slip Principle
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
3053
3064
.
15.
Zettl
,
B.
,
Szyszkowski
,
W.
, and
Zhang
,
W. J.
,
2004
, “
On Systematic Errors of Two-Dimensional Finite Element Modeling of Right Circular Planar Flexure Hinges
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
782
787
.
16.
Smith
,
S. T.
,
Badami
,
V. G.
,
Dale
,
J. S.
, and
Xu
,
Y.
,
1997
, “
Elliptical Flexure Hinges
,”
Rev. Sci. Instrum.
,
68
(
3
), pp.
1474
1483
, 03.
17.
Paros
,
J. M.
, and
Weisbord
,
L.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
(
27
), pp.
151
156
.
18.
Lobontiu
,
N.
,
Paine
,
J. S.
,
O’Malley
,
E.
, and
Samuelson
,
M.
,
2002
, “
Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion Precision and Stress Characterization Based on Compliance Closed-Form Equations
,”
Precis. Eng.
,
26
(
2
), pp.
183
192
.
19.
Linß
,
S.
,
Schorr
,
P.
, and
Zentner
,
L.
,
2017
, “
General Design Equations for the Rotational Stiffness, Maximal Angular Deflection and Rotational Precision of Various Notch Flexure Hinges
,”
Mech. Sci.
,
8
(
1
), pp.
29
49
.
20.
Schotborgh
,
W.
,
Kokkeler
,
F.
,
Tragter
,
H.
, and
van Houten
,
F.
,
2004
, “
Dimensionless Design Graphs for Flexure Elements and a Comparison Between Three Flexure Elements
,”
Precis. Eng.
,
29
(
1
), pp.
41
47
, Elsevier Raleigh, Science.
21.
Yang
,
Z.
,
Shi
,
Y.
, and
Yan
,
P.
,
2023
, “
A Novel Design of Compact Tilt Stage With Spatially Distributed Anti-Symmetric Compliant Mechanism
,”
Sens. Actuators A
,
349
, p.
113995
.
22.
Zeng
,
W.
,
Xu
,
G.
,
Jiang
,
H.
,
Huang
,
C.
,
Gao
,
F.
, and
Yang
,
S.
,
2023
, “
Design of a Variable-Diameter Wheel With a Novel Distributed Compliant Mechanism
,”
Mech. Mach. Theory
,
189
, p.
105450
.
23.
Li
,
Y.
,
Bi
,
S.
, and
Zhao
,
C.
,
2019
, “
Analytical Modeling and Analysis of Rhombus-Type Amplifier Based on Beam Flexures
,”
Mech. Mach. Theory
,
139
, pp.
195
211
.
24.
Shao
,
S.
,
Xu
,
M.
,
Zhang
,
S.
, and
Xie
,
S.
,
2016
, “
Stroke Maximizing and High Efficient Hysteresis Hybrid Modeling for a Rhombic Piezoelectric Actuator
,”
Mech. Syst. Signal Process.
,
75
, pp.
631
647
.
25.
Brocks
,
W.
, and
Steglich
,
D.
,
2006
,
Engineering Mechanics
,
Macmillan
,
Beijing, China
.
26.
Owen
,
S.
, and
Harper
,
J.
,
1999
, “
Mechanical, Microscopical and Fire Retardant Studies of ABS Polymers
,”
Polym. Degrad. Stab.
,
64
(
3
), pp.
449
455
.
27.
di Cortemiglia
,
M.
,
Camino
,
G.
,
Costa
,
L.
,
Roma
,
P.
, and
Rossi
,
A.
,
1987
, “
Mechanism of Action and Pyrolysis of Brominated Fire Retardants in Acrylonitrile-Butadiene-Styrene Polymers
,”
J. Anal. Appl. Pyrolysis
,
11
, pp.
511
526
.
28.
Xu
,
S.
,
Zhang
,
L.
,
Lin
,
Y.
,
Li
,
R.
, and
Zhang
,
F.
,
2012
, “
Layered Double Hydroxides Used as Flame Retardant for Engineering Plastic Acrylonitrile–Butadiene–Styrene (ABS)
,”
J. Phys. Chem. Solids
,
73
(
12
), pp.
1514
1517
.
You do not currently have access to this content.