Abstract

In human-centered design, developing a comprehensive and in-depth understanding of user experiences—empathic understanding—is paramount for designing products that truly meet human needs. Nevertheless, accurately comprehending the real underlying mental states of a large human population remains a significant challenge today. This difficulty mainly arises from the tradeoff between depth and scale of user experience research: gaining in-depth insights from a small group of users does not easily scale to a larger population, and vice versa. This paper investigates the use of large language models (LLMs) for performing mental inference tasks, specifically inferring users' underlying goals and fundamental psychological needs (FPNs). Baseline and benchmark datasets were collected from human users and designers to develop an empathic accuracy metric for measuring the mental inference performance of LLMs. The empathic accuracy of inferring goals and FPNs of different LLMs with varied zero-shot prompt engineering techniques are experimented against that of human designers. Experimental results suggest that LLMs can infer and understand the underlying goals and FPNs of users with performance comparable to that of human designers, suggesting a promising avenue for enhancing the scalability of empathic design approaches through the integration of advanced artificial intelligence technologies. This work has the potential to significantly augment the toolkit available to designers during human-centered design, enabling the development of both large-scale and in-depth understanding of users' experiences.

References

1.
Surma-Aho
,
A.
, and
Hölttä-Otto
,
K.
,
2022
, “
Conceptualization and Operationalization of Empathy in Design Research
,”
Des. Stud.
,
78
, p.
101075
.
2.
Kelley
,
D.
,
2015
,
The Field Guide to Human-Centered Design
. https://www.designkit.org/resources/1.html.
3.
Sanders
,
E. B. N.
,
2002
, “From User-Centered to Participatory Design Approaches,”
Design and the Social Sciences
,
J.
Frascara
, ed.,
CRC Press
,
London
, pp.
18
25
.
4.
Visser
,
F. S.
,
Stappers
,
P. J.
,
Van der Lugt
,
R.
, and
Sanders
,
E. B.
,
2005
, “
Contextmapping: Experiences From Practice
,”
CoDesign
,
1
(
2
), pp.
119
149
.
5.
Kouprie
,
M.
, and
Visser
,
F. S.
,
2009
, “
A Framework for Empathy in Design: Stepping Into and Out of the User’s Life
,”
J. Eng. Des.
,
20
(
5
), pp.
437
448
.
6.
Li
,
J.
, and
Hölttä-Otto
,
K.
,
2020
, “
The Influence of Designers’ Cultural Differences on the Empathic Accuracy of User Understanding
,”
Des. J.
,
23
(
5
), pp.
779
796
.
7.
Siddharth
,
L.
,
Blessing
,
L.
, and
Luo
,
J.
,
2022
, “
Natural Language Processing In-and-For Design Research
,”
Des. Sci.
,
8
, p.
e21
.
8.
Timoshenko
,
A.
, and
Hauser
,
J. R.
,
2019
, “
Identifying Customer Needs From User-Generated Content
,”
Mark. Sci.
,
38
(
1
), pp.
1
20
.
9.
Wang
,
X.
,
Liu
,
A.
, and
Kara
,
S.
,
2023
, “
Constructing Product Usage Context Knowledge Graph Using User-Generated Content for User-Driven Customization
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041404
.
10.
Norman
,
D. A.
,
2013
,
The Design of Everyday Things: Revised and Expanded Edition
,
Basic Books
,
New York
.
11.
Asada
,
M.
,
2015
, “
Development of Artificial Empathy
,”
Neurosci. Res.
,
90
, pp.
41
50
.
12.
Yalcin
,
Ӧ. N.
, and
DiPaola
,
S.
,
2018
, “
A Computational Model of Empathy for Interactive Agents
,”
Biolog. Insp. Cogn. Architect.
,
26
, pp.
20
25
.
13.
Yalçın
,
Ö. N.
, and
DiPaola
,
S.
,
2020
, “
Modeling Empathy: Building a Link Between Affective and Cognitive Processes
,”
Artif. Intell. Rev.
,
53
(
4
), pp.
2983
3006
.
14.
Zhu
,
Q.
, and
Luo
,
J.
,
2024
, “
Toward Artificial Empathy for Human-Centered Design
,”
ASME J. Mech. Des.
,
146
(
6
), p.
061401
.
15.
Chang-Arana
,
ÁM
,
Surma-Aho
,
A.
,
Li
,
J.
,
Yang
,
M. C.
, and
Hölttä-Otto
,
K.
,
2020
, “
Reading the User’s Mind: Designers Show High Accuracy in Inferring Design-Related Thoughts and Feelings
,”
IDETC-CIE
(Vol.
83976
),
ASME
, p.
V008T08A029
.
16.
Chang-Arana
,
Á. M.
,
Piispanen
,
M.
,
Himberg
,
T.
,
Surma-Aho
,
A.
,
Alho
,
J.
,
Sams
,
M.
, and
Hölttä-Otto
,
K.
,
2020
, “
Empathic Accuracy in Design: Exploring Design Outcomes Through Empathic Performance and Physiology
,”
Des. Sci.
,
6
, p.
e16
.
17.
Wertsch
,
J. V.
,
1983
, “
The Concept of Activity in Soviet Psychology
,”
Stud. Soviet Thought
,
25
(
1
), pp.
56
59
.
18.
Kashima
,
Y.
,
McKintyre
,
A.
, and
Clifford
,
P.
,
1998
, “
The Category of the Mind: Folk Psychology of Belief, Desire, and Intention
,”
Asian J. Soc. Psychol.
,
1
(
3
), pp.
289
313
.
19.
Eccles
,
J. S.
, and
Wigfield
,
A.
,
2002
, “
Motivational Beliefs, Values, and Goals
,”
Annu. Rev. Psychol.
,
53
(
1
), pp.
109
132
.
20.
Deci
,
E. L.
, and
Ryan
,
R. M.
,
2000
, “
The “What” and “Why” of Goal Pursuits: Human Needs and the Self-Determination of Behavior
,”
Psychol. Inquiry
,
11
(
4
), pp.
227
268
.
21.
Kaptelinin
,
V.
, and
Nardi
,
B. A.
,
2006
, “Activity Theory in a Nutshell,”
Acting With Technology: Activity Theory and Interaction Design
,
MIT Press
,
Cambridge, MA
, pp.
29
72
.
22.
Hassenzahl
,
M.
,
2010
,
Experience Design: Technology for All the Right Reasons
,
Morgan & Claypool Publishers
,
San Rafael, CA
.
23.
Desmet
,
P. M. A.
, and
Fokkinga
,
S. F.
,
2020
, “
Beyond Maslow’s Pyramid: Introducing a Typology of Thirteen Fundamental Needs for Human-Centered Design
,”
Multimodal Technol. Interact.
,
4
(
3
), p.
38
.
24.
Kosinski
,
M.
,
2023
,
Theory of Mind May Have Spontaneously Emerged in Large Language Models
. arXiv preprint arXiv:2302.02083, 4, 169.
25.
Trott
,
S.
,
Jones
,
C.
,
Chang
,
T.
,
Michaelov
,
J.
, and
Bergen
,
B.
,
2023
, “
Do Large Language Models Know What Humans Know?
,”
Cogn. Sci.
,
47
(
7
), p.
e13309
.
26.
Frith
,
C.
, and
Frith
,
U.
,
2005
, “
Theory of Mind
,”
Curr. Biol.
,
15
(
17
), pp.
R644
R645
.
27.
Wei
,
J.
,
Wang
,
X.
,
Schuurmans
,
D.
,
Bosma
,
M.
,
Xia
,
F.
,
Chi
,
E.
, and
Zhou
,
D.
,
2022
, “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,”
Advances in Neural Information Processing Systems
, Vol.
35
,
S.
Koyejo
,
S.
Mohamed
,
A.
Agarwal
, et al
, eds.,
Curran Associates, Inc.
,
Red Hook, NY
, pp.
24824
24837
.
28.
Kojima
,
T.
,
Gu
,
S. S.
,
Reid
,
M.
,
Matsuo
,
Y.
, and
Iwasawa
,
Y.
,
2022
, “Large Language Models Are Zero-Shot Reasoners,”
Advances in Neural Information Processing Systems
, Vol.
35
,
S.
Koyejo
,
S.
Mohamed
,
A.
Agarwal
, et al
, eds.,
Curran Associates, Inc.
,
Red Hook, NY
, pp.
22199
22213
.
29.
Binz
,
M.
, and
Schulz
,
E.
,
2023
, “
Using Cognitive Psychology to Understand GPT-3
,”
Proc. Natl. Acad. Sci.
,
120
(
6
), p.
e2218523120
.
30.
Yao
,
S.
,
Yu
,
D.
,
Zhao
,
J.
,
Shafran
,
I.
,
Griffiths
,
T.
,
Cao
,
Y.
, and
Narasimhan
,
K.
,
2023
, “Tree of Thoughts: Deliberate Problem Solving With Large Language Models,”
Advances in Neural Information Processing Systems
, Vol.
36
,
A.
Oh
,
T.
Naumann
,
A.
Globerson
, et al
, eds.,
Curran Associates, Inc.
,
Red Hook, NY
, pp.
11809
11822
.
31.
Desmet
,
P. M. A.
, and
Fokkinga
,
S. F.
,
2020
,
Thirteen Fundamental Psychological Needs
,
Delft University of Technology
,
Delft, The Netherlands
. https://diopd.org/wp-content/uploads/2021/01/Desmet-Fokkinga-2020-13-fundamental-needs.pdf.
32.
Nguyen
,
S.
,
Beck
,
D.
, and
Hölttä-Otto
,
K.
,
2023
, “
Predicting Empathic Accuracy From User-Designer Interviews
,”
Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association
,
Melbourne, Australia
,
Nov. 29–Dec. 1
.
33.
OpenAI
,
2023
, GPT-4 Technical Report. https://cdn.openai.com/papers/gpt-4.pdf.
34.
Muennighoff
,
N.
,
Tazi
,
N.
,
Magne
,
L.
, and
Reimers
,
N.
,
2023
, “
MTEB: Massive Text Embedding Benchmark
,”
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
,
Dubrovnik, Croatia
,
May 2–6
, pp.
2014
2037
.
35.
Chang-Arana
,
Á. M.
,
Surma-Aho
,
A.
,
Hölttä-Otto
,
K.
, and
Sams
,
M.
,
2022
, “
Under the Umbrella: Components of Empathy in Psychology and Design
,”
Des. Sci.
,
8
, p.
e20
.
36.
Gaesser
,
B.
,
2013
, “
Constructing Memory, Imagination, and Empathy: A Cognitive Neuroscience Perspective
,”
Front. Psychol.
,
3
, p.
576
.
You do not currently have access to this content.