Abstract

Hybrid cellular automaton (HCA) method is a topology optimization method with high convergence efficiency. Harmonic response topology optimization problem has been widely researched and common frequency-domain methods have been applied to solve this problem. Despite this, little work has so far been undertaken to utilize the HCA method to improve the calculation efficiency of harmonic response topology optimization. In this article, we present a methodology that applies the HCA method to solve harmonic response topology optimization problem. Mode displacement method (MDM), mode acceleration method (MAM), and full method (FM) are common frequency-domain methods that are utilized as harmonic response analysis methods in this study. The examples under rotating loads demonstrate that feasibility of this methodology at one specific frequency excitation and multiple frequencies excitation. This article presents and implements a high convergence efficiency method for harmonic response topology optimization, and this method can converge in 20–30 iterations. This method can extend the application range of the HCA method and improve the optimization efficiency of harmonic response topology optimization.

References

1.
Tovar
,
A.
,
Patel
,
N. M.
,
Niebur
,
G. L.
,
Sen
,
M.
, and
Renaud
,
J. E.
,
2006
, “
Topology Optimization Using a Hybrid Cellular Automation Method With Local Control Rules
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1205
1216
.
2.
Patel
,
N. M.
,
Penninger
,
C. L.
, and
Renaud
,
J. E.
,
2009
, “
Topology Synthesis of Extrusion-Based Nonlinear Transient Designs
,”
ASME J. Mech. Des.
,
131
(
6
), p. 061003.
3.
Patel
,
N. M.
,
Kang
,
B. S.
,
Renaud
,
J. E.
, and
Tovar
,
A.
,
2009
, “
Crashworthiness Design Using Topology Optimization
,”
ASME J. Mech. Des.
,
131
(
6
), p. 061013.
4.
Hunkeler
,
S.
,
Duddeck
,
F.
, and
Rayamajhi
,
M.
,
2013
, “
Topology Optimisation Method for Crashworthiness Design Using Hybrid Cellular Automata and Thin-Walled Ground Structures
,”
9th Europ LS-DYNA Conference
,
Manchester, UK
,
June 2013
.
5.
Bandi
,
P.
,
Schmiedeler
,
J. P.
, and
Tovar
,
A.
,
2013
, “
Design of Crashworthy Structures With Controlled Energy Absorption in the Hybrid Cellular Automaton Framework
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091002
.
6.
Duddeck
,
F.
,
Hunkeler
,
S.
,
Lozano
,
P.
,
Wehrle
,
E.
, and
Zeng
,
D.
,
2016
, “
Topology Optimization for Crashworthiness of Thin-Walled Structures Under Axial Impact Using Hybrid Cellular Automata
,”
Struct. Multidiscipl. Optim.
,
54
(
3
), pp.
415
428
.
7.
Afrousheh
,
M.
,
Marzbanrad
,
J.
, and
Göhlich
,
D.
,
2019
, “
Topology Optimization of Energy Absorbers Under Crashworthiness Using Modified Hybrid Cellular Automata (MHCA) Algorithm
,”
Struct. Multidiscipl. Optim.
,
60
(
3
), pp.
1021
1034
.
8.
Zhang
,
X.
,
Wang
,
D.
,
Huang
,
B.
,
Wang
,
S.
,
Zhang
,
Z.
,
Li
,
S.
,
Xie
,
C.
, and
Kong
,
D.
,
2023
, “
A Dynamic-Static Coupling Topology Optimization Method Based on Hybrid Cellular Automata
,”
Structures
,
50
, pp.
1573
1583
.
9.
Ma
,
Z.-D.
,
Kikuchi
,
N.
, and
Cheng
,
H.-C.
,
1995
, “
Topological Design for Vibrating Structures
,”
Comput. Methods Appl. Mech. Engrg
,
121
(
1–4
), pp.
259
280
.
10.
Jog
,
C. S.
,
2002
, “
Topology Design of Structures Subjected to Periodic Loading
,”
J. Sound Vib.
,
253
(
3
), pp.
687
709
.
11.
Yoon
,
G. H.
,
2010
, “
Structural Topology Optimization for Frequency Response Problem Using Model Reduction Schemes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
25–28
), pp.
1744
1763
.
12.
Liu
,
H.
,
Zhang
,
W.
, and
Gao
,
T.
,
2015
, “
A Comparative Study of Dynamic Analysis Methods for Structural Topology Optimization Under Harmonic Force Excitations
,”
Struct. Multidiscipl. Optim.
,
51
(
6
), pp.
1321
1333
.
13.
Zhao
,
X.
,
Wu
,
B.
,
Li
,
Z.
, and
Zhong
,
H.
,
2018
, “
A Method for Topology Optimization of Structures Under Harmonic Excitations
,”
Struct. Multidiscipl. Optim.
,
58
(
2
), pp.
475
487
.
14.
Kang
,
Z.
,
Zhang
,
X.
,
Jiang
,
S.
, and
Cheng
,
G.
,
2012
, “
On Topology Optimization of Damping Layer in Shell Structures Under Harmonic Excitations
,”
Struct. Multidiscipl. Optim.
,
46
(
1
), pp.
51
67
.
15.
Yu
,
Y.
,
Jang
,
I. G.
, and
Kwak
,
B. M.
,
2013
, “
Topology Optimization for a Frequency Response and Its Application to a Violin Bridge
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
627
636
.
16.
Zhu
,
J. H.
,
He
,
F.
,
Liu
,
T.
,
Zhang
,
W. H.
,
Liu
,
Q.
, and
Yang
,
C.
,
2018
, “
Structural Topology Optimization Under Harmonic Base Acceleration Excitations
,”
Struct. Multidiscipl. Optim.
,
57
(
3
), pp.
1061
1078
.
17.
Bendsùe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
18.
Zhu
,
J. H.
,
Beckers
,
P.
, and
Zhang
,
W. H.
,
2010
, “
On the Multi-Component Layout Design With Inertial Force
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2222
2230
.
19.
Patnaik
,
S. N.
, and
Hopkinsb
,
D. A.
,
1998
, “
Optimality of a Fully Stressed Design
,”
Comput. Methods Appl. Mech. Eng.
,
165
, pp.
215
221
.
20.
Tovar
,
A.
, and
Khandelwal
,
K.
,
2013
, “
Topology Optimization for Minimum Compliance Using a Control Strategy
,”
Eng. Struct.
,
48
, pp.
674
682
.
21.
Ziegler
,
J. G.
,
Nichols
,
N. B.
, and
Rochester
,
N. Y.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
Trans. Am. Soc. Mech. Eng.
,
64
(
8
), pp.
759
765
.
22.
Patel
,
N. M.
,
Kang
,
B. S.
, and
Renaud
,
J. E.
,
2006
, “
Topology Synthesis of Structures Under Impact Loading Using a Hybrid Cellular Automaton Algorithm
,”
Collection of Technical Papers – 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Portsmouth, VA
,
Sept. 6–8
, Vol. 1, pp.
457
475
.
23.
Jones
,
M. T.
, and
Patrick
,
M. L.
,
1989
, “
The Use of Lanczos's Method to Solve the Large Generalized Symmetric Definite Eigenvalue Problem
,”
NASA Contractor Report
,
Hampton, VA
,
September 1989
.
24.
Besselink
,
B.
,
Tabak
,
U.
,
Lutowska
,
A.
,
Van de Wouw
,
N.
,
Nijmeijer
,
H.
,
Rixen
,
D. J.
,
Hochstenbach
,
M. E.
, and
Schilders
,
W. H.
,
2013
, “
A Comparison of Model Reduction Techniques From Structural Dynamics, Numerical Mathematics and Systems and Control
,”
J. Sound Vib.
,
332
(
19
), pp.
4403
4422
.
25.
Liu
,
H.
,
Zhang
,
W.
, and
Gao
,
T.
,
2016
, “
Structural Topology Optimization Under Rotating Load
,”
Struct. Multidiscipl. Optim.
,
53
(
4
), pp.
847
859
.
26.
Giraldo-Londoño
,
O.
,
Aguiló
,
M. A.
, and
Paulino
,
G. H.
,
2021
, “
Local Stress Constraints in Topology Optimization of Structures Subjected to Arbitrary Dynamic Loads: A Stress Aggregation-Free Approach
,”
Struct. Multidiscipl. Optim.
,
64
(
6
), pp.
3287
3309
.
27.
Senhora
,
F. V.
,
Menezes
,
I. F. M.
, and
Paulino
,
G. H.
,
2023
, “
Topology Optimization With Local Stress Constraints and Continuously Varying Load Direction and Magnitude: Towards Practical Applications
,”
Proc. R. Soc. A
,
479
(
2271
), p.
20220436
.
You do not currently have access to this content.