Abstract

This paper investigates the relationship between brain activity, measured by electroencephalography (EEG) data, and the performance assessment result of engineering design activities involving different cognitive processes. Employing a novel signal processing pipeline, we analyzed EEG variations of 37 subjects during two design tasks that mostly leverage, respectively, convergent and divergent thinking: the design with morphological table (task and the problem-solving task. The EEG recordings underwent meticulous artifact removal, allowing for a comprehensive investigation into the statistical relationships between frequency bands, channels, and design outcome performance metrics. The developed models linking better design outcomes with brain (de)synchronization demonstrated remarkable accuracy, precision, and recall across performance metrics for both tasks. Notably, the EEG data in theta band measured from the frontal area at both hemispheres and a left parietal/occipital channel were essential for estimating better design performance with brain desynchronization. On the contrary, the model based on brain synchronization produces precise estimations of design performance with alpha band and channels in temporal and parietal areas. These findings highlight EEG variation as a viable proxy for design performance, paving the way for more effective performance prediction models with fewer sensors. Overall, this research contributes to the emerging field of neurocognitive design assessment and underscores the potential for EEG-based predictions in engineering design tasks.

References

1.
Cross
,
N.
,
2008
,
Engineering Design Methods: Strategies for Product Design
, 4th ed.,
John Wiley & Sons, Ltd
,
Chichester, UK
.
2.
Dorst
,
K.
, and
Cross
,
N.
,
2001
, “
Creativity in the Design Process: Co-Evolution of Problem–Solution
,”
Des. Stud.
,
22
(
5
), pp.
425
437
.
3.
Cai
,
H.
,
Do
,
E. Y.-L.
, and
Zimring
,
C. M.
,
2010
, “
Extended Linkography and Distance Graph in Design Evaluation: An Empirical Study of the Dual Effects of Inspiration Sources in Creative Design
,”
Des. Stud.
,
31
(
2
), pp.
146
168
.
4.
Alexiou
,
K.
,
Zamenopoulos
,
T.
, and
Gilbert
,
S.
,
2011
, “Imaging the Designing Brain: A Neurocognitive Exploration of Design Thinking,”
Design Computing and Cognition '10
,
J. S.
Gero
, ed.,
Springer
,
Dordrecht, Netherlands
, pp.
489
504
.
5.
Shealy
,
T.
,
Gero
,
J.
,
Hu
,
M.
, and
Milovanovic
,
J.
,
2020
, “
Concept Generation Techniques Change Patterns of Brain Activation During Engineering Design
,”
Des. Sci.
,
6
, p.
e31
.
6.
Nguyen
,
T. A.
, and
Zeng
,
Y.
,
2010
, “
Analysis of Design Activities Using EEG Signals
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5: 22nd International Conference on Design Theory and Methodology; Special Conference on Mechanical Vibration and Noise
, Montreal, Quebec, Canada, Aug. 15–18, pp.
277
286
.
7.
Stern
,
J. M.
,
2013
,
Atlas of EEG Patterns
, 2nd ed.,
Lippincott Williams and Wilkins
,
Philadelphia, PA
.
8.
Berka
,
C.
,
Levendowski
,
D. J.
,
Lumicao
,
M. N.
,
Yau
,
A.
,
Davis
,
G.
,
Zivkovic
,
V. T.
,
Olmstead
,
R. E.
,
Tremoulet
,
P. D.
, and
Craven
,
P. L.
,
2007
, “
EEG Correlates of Task Engagement and Mental Workload in Vigilance, Learning, and Memory Tasks
,”
Aviat. Space Environ. Med.
,
78
(
Suppl. 5
), pp.
B231
244
. https://pubmed.ncbi.nlm.nih.gov/17547324/
9.
Benedek
,
M.
,
Schickel
,
R. J.
,
Jauk
,
E.
,
Fink
,
A.
, and
Neubauer
,
A. C.
,
2014
, “
Alpha Power Increases in Right Parietal Cortex Reflects Focused Internal Attention
,”
Neuropsychologia
,
56
(
4
), pp.
393
400
.
10.
Agnoli
,
S.
,
Zanon
,
M.
,
Mastria
,
S.
,
Avenanti
,
A.
, and
Corazza
,
G. E.
,
2020
, “
Predicting Response Originality Through Brain Activity: An Analysis of Changes in EEG Alpha Power During the Generation of Alternative Ideas
,”
NeuroImage
,
207
(
2
), p.
116385
.
11.
Jaušovec
,
N.
,
1997
, “
Differences in EEG Activity During the Solution of Closed and Open Problems
,”
Creat. Res. J.
,
10
(
4
), pp.
317
324
.
12.
Vieira
,
S.
,
Benedek
,
M.
,
Gero
,
J.
,
Li
,
S.
, and
Cascini
,
G.
,
2022
, “
Design Spaces and EEG Frequency Band Power in Constrained and Open Design
,”
Int. J. Des. Creat. Innov.
,
10
(
4
), pp.
193
221
.
13.
Jia
,
W.
, and
Zeng
,
Y.
,
2021
, “
EEG Signals Respond Differently to Idea Generation, Idea Evolution and Evaluation in a Loosely Controlled Creativity Experiment
,”
Sci. Rep.
,
11
(
1
), p.
2119
.
14.
Dietrich
,
A.
, and
Kanso
,
R.
,
2010
, “
A Review of EEG, ERP, and Neuroimaging Studies of Creativity and Insight
,”
Psychol. Bull.
,
136
(
5
), pp.
822
848
.
15.
Lopes da Silva
,
F. H.
,
2006
, “Event-Related Neural Activities: What About Phase?”
Prog. Brain Res.
, Vol.
159
,
C.
Neuper
, and
W.
Klimesch
, eds.,
Elsevier
,
Amsterdam, Netherlands
, pp.
3
17
.
16.
Jauk
,
E.
,
Benedek
,
M.
, and
Neubauer
,
A. C.
,
2012
, “
Tackling Creativity at Its Roots: Evidence for Different Patterns of EEG Alpha Activity Related to Convergent and Divergent Modes of Task Processing
,”
Int. J. Psychophysiol.
,
84
(
2
), pp.
219
225
.
17.
Razoumnikova
,
O. M.
,
2000
, “
Functional Organization of Different Brain Areas During Convergent and Divergent Thinking: An EEG Investigation
,”
Cogn. Brain Res.
,
10
(
1
), pp.
11
18
.
18.
Li
,
S.
,
Becattini
,
N.
, and
Cascini
,
G.
,
2021
, “
Correlating Design Performance to EEG Activation: Early Evidence From Experimental Data
,”
Proc. Des. Soc.
,
1
, pp.
771
780
.
19.
Simon
,
H. A.
,
1996
,
The Sciences of the Artificial (3rd Ed.)
,
MIT Press
,
Cambridge, MA
.
20.
Hay
,
L.
,
Duffy
,
A. H.
,
McTeague
,
C.
,
Pidgeon
,
L. M.
,
Vuletic
,
T.
, and
Grealy
,
M.
,
2017
, “
Towards a Shared Ontology: A Generic Classification of Cognitive Processes in Conceptual Design
,”
Des. Sci.
,
3
, p.
e7
.
21.
Cross
,
N.
,
Christiaans
,
H.
, and
Dorst
,
K.
,
1997
,
Analysing Design Activity
,
Wiley
,
New York
, p.
1
.
22.
Masclet
,
C.
,
Poulin
,
M.
,
Boujut
,
J. F.
, and
Becattini
,
N.
,
2020
, “
Real-Time Coding Method and Tool for Artefact-Centric Interaction Analysis in Co-Design Situations Assisted by Augmented Reality
,”
Int. J. Interact. Des. Manuf.
,
14
(
4
), pp.
1141
1157
.
23.
Yang
,
M. C.
,
2005
, “
A Study of Prototypes, Design Activity, and Design Outcome
,”
Des. Stud.
,
26
(
6
), pp.
649
669
.
24.
Gero
,
J. S.
, and
Mc Neill
,
T.
,
1998
, “
An Approach to the Analysis of Design Protocols
,”
Des. Stud.
,
19
(
1
), pp.
21
61
.
25.
Someren
,
M.
,
Barnard
,
Y.
, and
Sandberg
,
J.
,
1994
,
The Think Aloud Method—A Practical Guide to Modelling Cognitive Processes
,
Academic Press
,
London
.
26.
Blessing
,
L.
, and
Chakrabarti
,
A.
,
2009
,
DRM: A Design Research Methodology
, 1st ed.,
Springer
,
London
.
27.
Becattini
,
N.
,
Montecchi
,
T.
,
Nikulin
,
C.
, and
Cascini
,
G.
,
2020
, “
Self-Assessment of Creative Performance With a Learning-by-Doing Approach: Getting Familiar With Novelty, Quality, Quantity and Variety
,”
Proceedings of the 6th International Conference on Design Creativity, ICDC 2020
,
Oulu, Finland
,
Aug. 26–28
, pp.
336
343
.
28.
Hay
,
L.
,
Duffy
,
A. H.
,
Gilbert
,
S. J.
,
Lyall
,
L.
,
Campbell
,
G.
,
Coyle
,
D.
, and
Grealy
,
M. A.
,
2019
, “
The Neural Correlates of Ideation in Product Design Engineering Practitioners
,”
Des. Sci.
,
5
, pp.
1
23
.
29.
Tsai
,
Y.-P.
,
Hung
,
S.-H.
,
Huang
,
T.-R.
,
Sullivan
,
W. C.
,
Tang
,
S.-A.
, and
Chang
,
C.-Y.
,
2021
, “
What Part of the Brain is Involved in Graphic Design Thinking in Landscape Architecture?
,”
PLoS One
,
16
(
12
), p.
e0258413
.
30.
Milovanovic
,
J.
,
Hu
,
M.
,
Shealy
,
T.
, and
Gero
,
J.
,
2021
, “
Characterization of Concept Generation for Engineering Design Through Temporal Brain Network Analysis
,”
Des. Stud.
,
76
, pp.
1
33
.
31.
Goucher-Lambert
,
K.
,
Moss
,
J.
, and
Cagan
,
J.
,
2017
, “
Inside the Mind: Using Neuroimaging to Understand Moral Product Preference Judgments Involving Sustainability
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041103
.
32.
Fink
,
A.
,
Grabner
,
R. H.
,
Benedek
,
M.
,
Reishofer
,
G.
,
Hauswirth
,
V.
,
Fally
,
M.
,
Neuper
,
C.
,
Ebner
,
F.
, and
Neubauer
,
A. C.
,
2009
, “
The Creative Brain: Investigation of Brain Activity During Creative Problem Solving by Means of EEG and FMRI
,”
Hum. Brain Mapp.
,
30
(
3
), pp.
734
748
.
33.
Jaušovec
,
N.
, and
Jaušovec
,
K.
,
2000
, “
EEG Activity During the Performance of Complex Mental Problems
,”
Int. J. Psychophysiol.
,
36
(
1
), pp.
73
88
.
34.
Razumnikova
,
O. M.
,
2007
, “
Creativity Related Cortex Activity in the Remote Associates Task
,”
Brain Res. Bull.
,
73
(
1
), pp.
96
102
.
35.
Shemyakina
,
N. V.
, and
Dan’ko
,
S. G.
,
2007
, “
Changes in the Power and Coherence of the β2 EEG Band in Subjects Performing Creative Tasks Using Emotionally Significant and Emotionally Neutral Words
,”
Hum. Physiol.
,
33
(
1
), pp.
20
26
.
36.
Torrance
,
E. P.
,
1968
,
Torrance Tests of Creative Thinking
,
Personnel Press, Inc.
,
Princeton, NJ
.
37.
Mednick
,
S.
,
1962
, “
The Associative Basis of the Creative Process
,”
Psychol. Rev.
,
69
(
3
), pp.
220
232
.
38.
Guilford
,
J. P.
,
1967
,
Nature of Human Intelligence
,
McGraw-Hill
,
New York
.
39.
Fink
,
A.
,
Benedek
,
M.
,
Grabner
,
R. H.
,
Staudt
,
B.
, and
Neubauer
,
A. C.
,
2007
, “
Creativity Meets Neuroscience: Experimental Tasks for the Neuroscientific Study of Creative Thinking
,”
Methods
,
42
(
1
), pp.
68
76
.
40.
Volf
,
N. V.
, and
Tarasova
,
I. V.
,
2010
, “
The Relationships Between EEG θ and β Oscillations and the Level of Creativity
,”
Hum. Physiol.
,
36
(
2
), pp.
132
138
.
41.
Wu
,
C.-L.
,
Huang
,
S.-Y.
,
Chen
,
P.-Z.
, and
Chen
,
H.-C.
,
2020
, “
A Systematic Review of Creativity-Related Studies Applying the Remote Associates Test From 2000 to 2019
,”
Front. Psychol.
,
11
, p.
573432
.
42.
Alabbasi
,
A. M. A.
,
Paek
,
S. H.
,
Kim
,
D.
, and
Cramond
,
B.
,
2022
, “
What Do Educators Need to Know About the Torrance Tests of Creative Thinking: A Comprehensive Review
,”
Front. Psychol.
,
13
(
10
), p.
1000385
.
43.
Pidgeon
,
L. M.
,
Grealy
,
M.
,
Duffy
,
A. H. B.
,
Hay
,
L.
,
McTeague
,
C.
,
Vuletic
,
T.
,
Coyle
,
D.
, and
Gilbert
,
S. J.
,
2016
, “
Functional Neuroimaging of Visual Creativity: A Systematic Review and Meta-Analysis
,”
Brain Behav.
,
6
(
10
), pp.
1
26
.
44.
Yu
,
R.
,
Schubert
,
G.
, and
Gu
,
N.
,
2023
, “
Biometric Analysis in Design Cognition Studies: A Systematic Literature Review
,”
Buildings
,
13
(
3
), p.
630
.
45.
Jaarsveld
,
S.
,
Fink
,
A.
,
Rinner
,
M.
,
Schwab
,
D.
,
Benedek
,
M.
, and
Lachmann
,
T.
,
2015
, “
Intelligence in Creative Processes: An EEG Study
,”
Intelligence
,
49
(
3
), pp.
171
178
.
46.
Liu
,
Y.-C.
,
Chang
,
C.-C.
,
Yang
,
Y.-H. S.
, and
Liang
,
C.
,
2018
, “
Spontaneous Analogising Caused by Text Stimuli in Design Thinking: Differences Between Higher- and Lower-Creativity Groups
,”
Cogn. Neurodyn.
,
12
(
1
), pp.
55
71
.
47.
Askland
,
H. H.
,
Ostwald
,
M.
, and
Williams
,
A.
,
2010
, “
Changing Conceptualisations of Creativity in Design
,”
Proceedings of the 1st DESIRE Network Conference on Creativity and Innovation in Design
,
Aarhus, Denmark
,
Aug. 16–17
, pp.
4
11
.
48.
Nguyen
,
P.
,
Nguyen
,
T. A.
, and
Zeng
,
Y.
,
2018
, “
Empirical Approaches to Quantifying Effort, Fatigue and Concentration in the Conceptual Design Process
,”
Res. Eng. Des.
,
29
(
3
), pp.
393
409
.
49.
Nguyen
,
P.
,
Nguyen
,
T. A.
, and
Zeng
,
Y.
,
2019
, “
Segmentation of Design Protocol Using EEG
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
33
(
1
), pp.
11
23
.
50.
Vieira
,
S.
,
Gero
,
J. S.
,
Delmoral
,
J.
,
Gattol
,
V.
,
Fernandes
,
C.
,
Parente
,
M.
, and
Fernandes
,
A. A.
,
2020
, “
The Neurophysiological Activations of Mechanical Engineers and Industrial Designers While Designing and Problem-Solving
,”
Des. Sci.
,
6
(
10
), p.
e26
.
51.
Vieira
,
S.
,
Benedek
,
M.
,
Gero
,
J.
,
Li
,
S.
, and
Cascini
,
G.
,
2022
, “
Brain Activity in Constrained and Open Design: The Effect of Gender on Frequency Bands
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
36
, p.
e6
.
52.
Lukačević
,
F.
,
Becattini
,
N.
,
Perišić
,
M. M.
, and
Škec
,
S.
,
2023
, “
Differences in Engineers’ Brain Activity When CAD Modelling From Isometric and Orthographic Projections
,”
Sci. Rep.
,
13
(
1
), p.
9726
.
53.
Pfurtscheller
,
G.
, and
Lopes Da Silva
,
F. H.
,
1999
, “
Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles
,”
Clin. Neurophysiol.
,
110
(
11
), pp.
1842
1857
.
54.
Hummel
,
F. C.
, and
Gerloff
,
C.
,
2006
, “Interregional Long-Range and Short-Range Synchrony: A Basis for Complex Sensorimotor Processing,”
Event-Related Dynamics of Brain Oscillations
,
C.
Neuper
, and
W.
Klimesch
, eds.,
Elsevier
,
New York
, pp.
223
236
.
55.
Benedek
,
M.
,
Bergner
,
S.
,
Konen
,
T.
,
Fink
,
A.
, and
Neubauer
,
A. C.
,
2011
, “
EEG Alpha Synchronization is Related to Top-Down Processing in Convergent and Divergent Thinking
,”
Neuropsychologia
,
49
(
12
), pp.
3505
3511
.
56.
Stevens
,
C. E.
, and
Zabelina
,
D. L.
,
2019
, “
Creativity Comes in Waves: An EEG-Focused Exploration of the Creative Brain
,”
Curr. Opin. Behav. Sci.
,
27
, pp.
154
162
.
57.
Mölle
,
M.
,
Marshall
,
L.
,
Wolf
,
B.
,
Fehm
,
H. L.
, and
Born
,
J. A. N.
,
1999
, “
EEG Complexity and Performance Measures of Creative Thinking
,”
Psychophysiology
,
36
(
1
), pp.
95
104
.
58.
Lopes da Silva
,
F.
,
1991
, “
Neural Mechanisms Underlying Brain Waves: From Neural Membranes to Networks
,”
Electroencephalogr. Clin. Neurophysiol.
,
79
(
2
), pp.
81
93
.
59.
Gill
,
T. G.
, and
Murphy
,
W.
,
2011
, “
Task Complexity and Design Science
,”
9th International Conference on Education and Information Systems, Technologies and Applications (EISTA 2011)
,
Orlando, FL
,
July 19–22
.
60.
Wang
,
Y.
,
Yu
,
S.
,
Ma
,
N.
,
Wang
,
J.
,
Hu
,
Z.
,
Liu
,
Z.
, and
He
,
J.
,
2020
, “
Prediction of Product Design Decision Making: An Investigation of Eye Movements and EEG Features
,”
Adv. Eng. Inform.
,
45
, p.
101095
.
61.
Lan
,
Z.
,
Sourina
,
O.
,
Wang
,
L.
, and
Liu
,
Y.
,
2016
, “
Real-Time EEG-Based Emotion Monitoring Using Stable Features
,”
Vis. Comput.
,
32
(
3
), pp.
347
358
.
62.
Pfurtscheller
,
G.
, and
da Silva
,
F. L.
,
2017
, “EEG Event-Related Desynchronization and Event Related Synchronization,”
Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields
, Vol.
11
,
D. L.
Schomer
, and
F. H. L.
da Silva
, eds.,
Oxford University Press
, pp.
1011
C40.P184
.
63.
Foldes
,
S. T.
, and
Taylor
,
D. M.
,
2013
, “
Speaking and Cognitive Distractions During EEG-Based Brain Control of a Virtual Neuroprosthesis-Arm
,”
J. Neuroeng. Rehabil.
,
10
(
1
), p.
116
.
64.
Hu
,
W.
,
Booth
,
J. W.
, and
Reid
,
T.
,
2017
, “
The Relationship Between Design Outcomes and Mental States During Ideation
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051101
.
65.
Kershaw
,
T. C.
,
Peterson
,
R. L.
,
McCarthy
,
M. A.
,
Young
,
A. P.
,
Seepersad
,
C. C.
,
Williams
,
P. T.
,
Hölttä-Otto
,
K.
, and
Bhowmick
,
S.
,
2015
, “
A Cross-Sectional and Longitudinal Examination of the Development of Innovation Capability in Undergraduate Engineering Students
,”
IDETCCIE
,
2015
(
8
), p.
V003T04A008
.
66.
Shah
,
J. J.
,
Vargas-Hernandez
,
N.
, and
Smith
,
S. M.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.
67.
BIOPAC Systems Inc
,
2019
, B-Alert With AcqKnowledge Quick Guide.
68.
Hu
,
W.-L.
, and
Reid
,
T.
,
2018
, “
The Effects of Designers’ Contextual Experience on the Ideation Process and Design Outcomes
,”
ASME J. Mech. Des.
,
140
(
10
), p.
101101
.
69.
Pahl
,
G.
, and
Beitz
,
W.
,
1996
,
Engineering Design
,
Springer
,
London
.
70.
Belski
,
I.
,
Skiadopoulos
,
A.
,
Aranda-Mena
,
G.
,
Cascini
,
G.
, and
Russo
,
D.
,
2019
, “Engineering Creativity: The Influence of General Knowledge and Thinking Heuristics,”
Advances in Systematic Creativity
,
L.
Chechurin
, and
M.
Collan
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
245
263
.
71.
Peirce
,
J.
,
Gray
,
J. R.
,
Simpson
,
S.
,
MacAskill
,
M.
,
Höchenberger
,
R.
,
Sogo
,
H.
,
Kastman
,
E.
, and
Lindeløv
,
J. K.
,
2019
, “
Psychopy2: Experiments in Behavior Made Easy
,”
Behav. Res. Methods
,
51
(
1
), pp.
195
203
.
72.
Linsey
,
J. S.
,
Clauss
,
E. F.
,
Kurtoglu
,
T.
,
Murphy
,
J. T.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2011
, “
An Experimental Study of Group Idea Generation Techniques: Understanding the Roles of Idea Representation and Viewing Methods
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031008
.
73.
Makeig
,
S.
,
Bell
,
A.
,
Jung
,
T.-P.
, and
Sejnowski
,
T. J.
,
1995
, “Independent Component Analysis of Electroencephalographic Data,”
Adv. Neural Inf. Process.
, Vol.
8
,
D.
Touretzky
,
M.C.
Mozer
, and
M.
Hasselmo
, eds.,
MIT Press
,
Cambridge, MA
, pp.
145
151
.
74.
Berg
,
P.
, and
Scherg
,
M.
,
1991
, “
Dipole Modelling of Eye Activity and Its Application to the Removal of Eye Artefacts From the EEG and MEG
,”
Clin. Phys. Physiol. Meas.
,
12
(
A
), pp.
49
54
.
75.
Borga
,
M.
, and
Knutsson
,
H.
,
2001
, A Canonical Correlation Approach to Blind Source Separation, Technical Report, Report LiU-IMT-EX-0062 Department of Biomedical Engineering, Linkping University, Linköping, Sweden.
76.
Haynes
,
W.
,
2013
, “Bonferroni Correction,”
Encyclopedia of Systems Biology
,
W.
Dubitzky
,
O.
Wolkenhauer
,
K.-H.
Cho
, and
H.
Yokota
, eds.,
Springer
,
New York, NY
, pp.
154
154
.
77.
Zhao
,
M.
,
Jia
,
W.
,
Yang
,
D.
,
Nguyen
,
P.
,
Nguyen
,
T. A.
, and
Zeng
,
Y.
,
2020
, “
A TEEG Framework for Studying Designer’s Cognitive and Affective States
,”
Des. Sci.
,
6
, p.
e29
.
78.
Klimesch
,
W.
,
Doppelmayr
,
M.
, and
Hanslmayr
,
S.
,
2006
, “
Upper Alpha ERD and Absolute Power: Their Meaning for Memory Performance
,”
Prog. Brain Res.
,
159
, pp.
151
165
.
79.
Sourov
,
I. H.
,
Ahmed
,
F. A.
,
Opu
,
M. T. I.
,
Mutasim
,
A. K.
,
Bashar
,
M. R.
,
Tipu
,
R. S.
,
Amin
,
M. A.
, and
Islam
,
M. K.
,
2023
, “
EEG-Based Preference Classification for Neuromarketing Application
,”
Comput. Intell. Neurosci.
,
2023
(
1
), pp.
1
13
.
80.
Klimesch
,
W.
,
1999
, “
EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis
,”
Brain Res. Rev.
,
29
(
2–3
), pp.
169
195
.
81.
Barrett
,
J. D.
,
Peterson
,
D. R.
,
Hester
,
K. S.
,
Robledo
,
I. C.
,
Day
,
E. A.
,
Hougen
,
D. P.
, and
Mumford
,
M. D.
,
2013
, “
Thinking About Applications: Effects on Mental Models and Creative Problem-Solving
,”
Creat. Res. J.
,
25
(
2
), pp.
199
212
.
82.
Kounios
,
J.
, and
Beeman
,
M.
,
2009
, “
The Aha! Moment: The Cognitive Neuroscience of Insight
,”
Curr. Direct. Psychol. Sci.
,
18
(
4
), pp.
210
216
.
83.
Ray
,
W. J.
, and
Cole
,
H. W.
,
1985
, “
EEG Alpha Activity Reflects Attentional Demands, and Beta Activity Reflects Emotional and Cognitive Processes
,”
Science
,
228
(
4700
), pp.
750
752
.
84.
Stipacek
,
A.
,
Grabner
,
R.
,
Neuper
,
C.
,
Fink
,
A.
, and
Neubauer
,
A.
,
2003
, “
Sensitivity of Human EEG Alpha Band Desynchronization to Different Working Memory Components and Increasing Levels of Memory Load
,”
Neurosci. Lett.
,
353
(
3
), pp.
193
196
.
85.
Fink
,
A.
,
Grabner
,
R.
,
Neuper
,
C.
, and
Neubauer
,
A.
,
2005
, “
EEG Alpha Band Dissociation With Increasing Task Demands
,”
Cogn. Brain Res.
,
24
(
2
), pp.
252
259
.
You do not currently have access to this content.