Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The design of soft grippers is challenging as the target objects to be handled involve a wide variety of sizes, shapes, and softness. Most grippers reported present drawbacks, e.g., complex control strategies for stiffness and force variation, inadequate adaptability to target shape variability, and complicated adaptation to manipulators, which in turn limit their implementation in applications such as harvesting. This paper presents a novel overlay soft gripper based on an assembling mechanism and passive soft structures, enabling the modification of grip size, orientation, and gripping force. This gripper can be assembled over a commercial robot-gripper taking the closing motion of this as the input to perform its closing motion. Input and output parameters are related by means of the displacement transmission mechanism which converts the closing motion of the robot-gripper into the closing motion of the overlay soft gripper. The gripping force can be modified through the change of stiffness, via adjustment of effective length using contact elements, of internal blade flexures. The displacement transmission mechanism works in two modes: as rigid-body mechanism without the contact elements and as rigid-body/flexible mechanism with the contact elements. The relationships between input and output parameters are obtained analytically for the case of rigid-body mechanism, and through finite element analysis simulations for the case of rigid-body/flexible mechanism. Relationships between input and output parameters are approximated with polynomial surfaces. Finally, physical prototypes are manufactured and assembled on their respective robot-grippers to qualitatively demonstrate their performance.

References

1.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2005
, “
Towards Grasping in Unstructured Environments: Grasper Compliance and Configuration Optimization
,”
Adv. Rob.
,
19
(
5
), pp.
523
543
.
2.
Bonilla
,
M.
,
Farnioli
,
E.
,
Piazza
,
C.
,
Catalano
,
M.
,
Grioli
,
G.
,
Garabini
,
M.
,
Gabiccini
,
M.
, and
Bicchi
,
A.
,
2014
, “
Grasping With Soft Hands
,”
2014 IEEE-RAS International Conference on Humanoid Robots
,
Madrid, Spain
,
Nov. 18–20
, pp.
581
587
.
3.
Santina
,
C. D.
,
Catalano
,
M. G.
, and
Bicchi
,
A.
,
2021
, “
Soft Robots
,”
Encyclopedia of Robotics
,
M. H.
Ang
,
O.
Khatib
, and
B.
Siciliano
, eds.,
Springer
,
Berlin
, pp.
1
14
.
4.
Zhang
,
B.
,
Xie
,
Y.
,
Zhou
,
J.
,
Wang
,
K.
, and
Zhang
,
Z.
,
2020
, “
State-of-the-Art Robotic Grippers, Grasping and Control Strategies, as Well as Their Applications in Agricultural Robots: A Review
,”
Comput. Electron. Agric.
,
177
, p.
105694
.
5.
Terrile
,
S.
,
Argüelles
,
M.
, and
Barrientos
,
A.
,
2021
, “
Comparison of Different Technologies for Soft Robotics Grippers
,”
Sensors
,
21
(
9
), p.
3253
.
6.
Udupa
,
G.
,
Sreedharan
,
P.
,
Sai Dinesh
,
P.
, and
Kim
,
D.
,
2014
, “
Asymmetric Bellow Flexible Pneumatic Actuator for Miniature Robotic Soft Gripper
,”
J. Robot.
,
2014
, p.
902625
.
7.
Brown
,
E.
,
Rodenberg
,
N.
,
Amend
,
J.
,
Mozeika
,
A.
,
Steltz
,
E.
,
Zakin
,
M. R.
,
Lipson
,
H.
, and
Jaeger
,
H. M.
,
2010
, “
Universal Robotic Gripper Based on the Jamming of Granular Material
,”
Proc. Natl. Acad. Sci. USA
,
107
(
44
), pp.
18809
18814
.
8.
Manti
,
M.
,
Hassan
,
T.
,
Passetti
,
G.
,
D’Elia
,
N.
,
Laschi
,
C.
, and
Cianchetti
,
M.
,
2015
, “
A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping
,”
Soft Robot.
,
2
(
3
), pp.
107
116
.
9.
Liu
,
C.-H.
,
Huang
,
G.-F.
,
Chiu
,
C.-H.
, and
Pai
,
T.-Y.
,
2018
, “
Topology Synthesis and Optimal Design of an Adaptive Compliant Gripper to Maximize Output Displacement
,”
J. Intell. Robot. Syst.
,
90
(
3
), pp.
287
304
.
10.
Navas
,
E.
,
Fernández
,
R.
,
Sepúlveda
,
D.
,
Armada
,
M.
, and
Gonzalez-de Santos
,
P.
,
2021
, “
Soft Grippers for Automatic Crop Harvesting: A Review
,”
Sensors
,
21
(
8
), p.
2689
.
11.
Hou
,
T.
,
Yang
,
X.
,
Aiyama
,
Y.
,
Liu
,
K.
,
Wang
,
Z.
,
Wang
,
T.
,
Liang
,
J.
, and
Fan
,
Y.
,
2019
, “
Design and Experiment of a Universal Two-Fingered Hand With Soft Fingertips Based on Jamming Effect
,”
Mech. Mach. Theory
,
133
, pp.
706
719
.
12.
Haibin
,
Y.
,
Cheng
,
K.
,
Junfeng
,
L.
, and
Guilin
,
Y.
,
2018
, “
Modeling of Grasping Force for a Soft Robotic Gripper With Variable Stiffness
,”
Mech. Mach. Theory
,
128
, pp.
254
274
.
13.
Yang
,
C.
,
Wu
,
W.
,
Wu
,
X.
,
Zhou
,
J.
,
Tu
,
Z.
,
Lin
,
M.
, and
Zhang
,
S.
,
2022
, “
A Flexible Gripper With a Wide-Range Variable Stiffness Structure Based on Shape Memory Alloy
,”
Ind. Robot: Int. J. Robot. Res. Appl.
,
49
(
6
), pp.
1190
1201
.
14.
Memar
,
A. H.
, and
Esfahani
,
E. T.
,
2020
, “
A Robot Gripper With Variable Stiffness Actuation for Enhancing Collision Safety
,”
IEEE Trans. Ind. Electron.
,
67
(
8
), pp.
6607
6616
.
15.
Lerner
,
E.
,
Zhang
,
H.
, and
Zhao
,
J.
,
2020
, “
Design and Experimentation of a Variable Stiffness Bistable Gripper
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Feb. 10
, pp.
9925
9931
.
16.
Yang
,
Y.
,
Zhu
,
H.
,
Liu
,
J.
,
Wei
,
Z.
,
Li
,
Y.
, and
Zhou
,
J.
,
2023
, “
A Novel Variable Stiffness and Tunable Bending Shape Soft Robotic Finger Based on Thermoresponsive Polymers
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
13
.
17.
Hu
,
T.
,
Lu
,
X.
, and
Xu
,
D.
,
2023
, “
A Dual-Mode and Enclosing Soft Robotic Gripper With Stiffness-Tunable and High-Load Capacity
,”
Sens. Actuators A: Phys.
,
354
, p.
114294
.
18.
Sun
,
T.
,
Chen
,
Y.
,
Han
,
T.
,
Jiao
,
C.
,
Lian
,
B.
, and
Song
,
Y.
,
2020
, “
A Soft Gripper With Variable Stiffness Inspired by Pangolin Scales, Toothed Pneumatic Actuator and Autonomous Controller
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101848
.
19.
Yang
,
Y.
,
Chen
,
Y.
,
Wei
,
Y.
, and
Li
,
Y.
,
2016
, “
Novel Design and Three-Dimensional Printing of Variable Stiffness Robotic Grippers
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061010
.
20.
Guo
,
X.-Y.
,
Li
,
W.-B.
,
Gao
,
Q.-H.
,
Yan
,
H.
,
Fei
,
Y.-Q.
, and
Zhang
,
W.-M.
,
2020
, “
Self-locking Mechanism for Variable Stiffness Rigid–Soft Gripper
,”
Smart Mater. Struct.
,
29
(
3
), p.
035033
.
21.
Li
,
X.
,
Chen
,
W.
,
Lin
,
W.
, and
Low
,
K. H.
,
2018
, “
A Variable Stiffness Robotic Gripper Based on Structure-Controlled Principle
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1104
1113
.
22.
Choi
,
J.
,
Hong
,
S.
,
Lee
,
W.
,
Kang
,
S.
, and
Kim
,
M.
,
2011
, “
A Robot Joint With Variable Stiffness Using Leaf Springs
,”
IEEE Trans. Rob.
,
27
(
2
), pp.
229
238
.
23.
Wang
,
W.
,
Fu
,
X.
,
Li
,
Y.
, and
Yun
,
C.
,
2016
, “
Design of Variable Stiffness Actuator Based on Modified Gear–Rack Mechanism
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061008
.
24.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
25.
Ma
,
F.
, and
Chen
,
G.
,
2015
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
26.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2020
, “
Analysis of a Novel Variable Stiffness Filleted Leaf Hinge
,”
Mech. Mach. Theory
,
144
, p.
103673
.
27.
Wu
,
K.
, and
Zheng
,
G.
,
2022
, “
A Comprehensive Static Modeling Methodology Via Beam Theory for Compliant Mechanisms
,”
Mech. Mach. Theory
,
169
, p.
104598
.
28.
Jamshidian
,
M.
,
Tehrany
,
E. A.
,
Imran
,
M.
,
Jacquot
,
M.
, and
Desobry
,
S.
,
2010
, “
Poly-lactic Acid: Production, Applications, Nanocomposites, and Release Studies
,”
Compr. Rev. Food Sci. Food Saf.
,
9
(
5
), pp.
552
571
.
You do not currently have access to this content.