Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper presents NURBS-OT (non-uniform rational B-splines—optimal transport), a new approach in the field of computer graphics and computer-aided design (CAD)/computer-aided manufacturing (CAM) for modeling complex free-form designs like aerodynamic and hydrodynamic structures, traditionally shaped by parametric curves such as Bézier, B-spline, and NURBS. Unlike prior models that used generative adversarial networks (GANs) involving large and complex parameter sets, our approach leverages a much lighter (0.37M versus 5.05M of BézierGAN), theoretically robust method by blending optimal transport with NURBS. This integration facilitates a more efficient generation of curvilinear designs. The efficacy of NURBS-OT has been validated through extensive testing on the University of Illinois Urbana-Champaign (UIUC) airfoil and superformula datasets, where it showed enhanced performance on various metrics. This demonstrates its ability to produce precise, realistic, and esthetically coherent designs, marking a significant advancement by merging classical geometrical techniques with modern deep learning.

References

1.
Mortenson
,
M.
,
2006
,
Geometric Modeling
(
EngineeringPro Collection
),
Industrial Press
,
New York
.
2.
Selig
,
M. S.
,
1996
, “UIUC Airfoil Data Site,” http://m-selig.ae.illinois.edu/, Accessed October, 2023.
3.
Piegl
,
L.
, and
Tiller
,
W.
,
1996
,
The NURBS Book
,
Springer Science & Business Media
,
Berlin, Germany
.
4.
Farin
,
G.
,
2001
,
Curves and Surfaces for CAGD: A Practical Guide
,
Elsevier
,
San Francisco, CA
.
5.
Chen
,
W.
, and
Fuge
,
M.
,
2018
, “BézierGAN: Automatic Generation of Smooth Curves From Interpretable Low-Dimensional Parameters,” preprint arXiv:1808.08871.
6.
Du
,
X.
,
He
,
P.
, and
Martins
,
J. R.
,
2020
, “
A B-Spline-Based Generative Adversarial Network Model for Fast Interactive Airfoil Aerodynamic Optimization
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p.
2128
.
7.
Gonog
,
L.
, and
Zhou
,
Y.
,
2019
, “
A Review: Generative Adversarial Networks
,”
2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Xiamen, China
,
June 19–21
,
IEEE
, pp.
505
510
.
8.
Creswell
,
A.
,
White
,
T.
,
Dumoulin
,
V.
,
Arulkumaran
,
K.
,
Sengupta
,
B.
, and
Bharath
,
A. A.
,
2018
, “
Generative Adversarial Networks: An Overview
,”
IEEE Signal Process Mag.
,
35
(
1
), pp.
53
65
.
9.
Villani
,
C.
,
2009
,
Optimal Transport: Old and New
, Vol. 338,
Springer
,
Berlin, Germany
.
10.
Panaretos
,
V. M.
, and
Zemel
,
Y.
,
2019
, “
Statistical Aspects of Wasserstein Distances
,”
Ann. Rev. Stat. Appl.
,
6
, pp.
405
431
.
11.
Knight
,
P. A.
,
2008
, “
The Sinkhorn–Knopp Algorithm: Convergence and Applications
,”
SIAM J. Matrix Anal. Appl.
,
30
(
1
), pp.
261
275
.
12.
Feydy
,
J.
,
Séjourné
,
T.
,
Vialard
,
F.-X.
,
Amari
,
S.-I.
,
Trouvé
,
A.
, and
Peyré
,
G.
,
2019
, “
Interpolating Between Optimal Transport and MMD Using Sinkhorn Divergences
,”
The 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019
),
Naha, Okinawa, Japan
,
Apr. 16–18
,
PMLR
, pp.
2681
2690
.
13.
Peyré
,
G.
, and
Cuturi
,
M.
,
2019
, “
Computational Optimal Transport: With Applications to Data Science
,”
Found. Trends Mach. Learn.
,
11
(
5–6
), pp.
355
607
.
14.
Courty
,
N.
,
Flamary
,
R.
, and
Tuia
,
D.
,
2014
, “
Domain Adaptation With Regularized Optimal Transport
,” Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2014, Proceedings, Part I 14, Sept. 15–19,
Springer
,
Nancy, France
, pp.
274
289
.
15.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Networks
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.
16.
Wang
,
Y.
,
Shimada
,
K.
, and
Barati Farimani
,
A.
,
2023
, “
Airfoil GAN: Encoding and Synthesizing Airfoils for Aerodynamic Shape Optimization
,”
J. Comput. Des. Eng.
,
10
(
4
), pp.
1350
1362
.
17.
Wada
,
K.
,
Suzuki
,
K.
, and
Yonekura
,
K.
,
2023
, “Physics-Guided Training of GAN to Improve Accuracy in Airfoil Design Synthesis,” preprint arXiv:2308.10038.
18.
Almahairi
,
A.
,
Rajeshwar
,
S.
,
Sordoni
,
A.
,
Bachman
,
P.
, and
Courville
,
A.
,
2018
, “
Augmented Cyclegan: Learning Many-to-Many Mappings From Unpaired Data
,”
International Conference on Machine Learning (ICML 2018)
,
Stockholm, Sweden
,
July 10–15
,
PMLR
, pp.
195
204
.
19.
Chen
,
X.
,
Duan
,
Y.
,
Houthooft
,
R.
,
Schulman
,
J.
,
Sutskever
,
I.
, and
Abbeel
,
P.
,
2016
, “
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
,”
Advances in Neural Information Processing Systems
,
Barcelona, Spain
,
Dec. 5–10
, Vol. 29, pp.
2172
2180
.
20.
Gauthier
,
J.
,
2014
, “
Conditional Generative Adversarial Nets for Convolutional Face Generation
,”
Class Project for Stanford CS231N: Convolutional Neural Networks for Visual Recognition, Winter Semester
, Vol.
2014
, No.
5
, p.
2
.
21.
Arjovsky
,
M.
,
Chintala
,
S.
, and
Bottou
,
L.
,
2017
, “
Wasserstein Generative Adversarial Networks
,”
International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
,
PMLR
, pp.
214
223
.
22.
Sanjabi
,
M.
,
Ba
,
J.
,
Razaviyayn
,
M.
, and
Lee
,
J. D.
,
2018
, “
On the Convergence and Robustness of Training GANs With Regularized Optimal Transport
,” Advances in Neural Information Processing Systems, Vol. 31,
S.
Bengio
,
H.
Wallach
,
H.
Larochelle
,
K.
Grauman
,
N.
Cesa-Bianchi
, and
R.
Garnett
, eds.,
Curran Associates, Inc.
,
New York
, pp.
7091
7101
.
23.
Salimans
,
T.
,
Zhang
,
H.
,
Radford
,
A.
, and
Metaxas
,
D.
,
2018
, “Improving GANs Using Optimal Transport,” preprint arXiv:1803.05573.
24.
Avraham
,
G.
,
Zuo
,
Y.
, and
Drummond
,
T.
,
2019
, “
Parallel Optimal Transport GAN
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Long Beach, CA
,
June
pp.
4391
4401
.
25.
Xu
,
T.
,
Wenliang
,
L. K.
,
Munn
,
M.
, and
Acciaio
,
B.
,
2020
, “
COT-GAN: Generating Sequential Data Via Causal Optimal Transport
,” Advances in Neural Information Processing Systems, Vol. 33,
H.
Larochelle
,
M.
Ranzato
,
R.
Hadsell
,
M.
Balcan
, and
H.
Lin
, eds.,
Curran Associates, Inc.
,
New York
, pp.
8798
8809
.
26.
Hughes
,
T. J.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.
27.
Genevay
,
A.
,
Peyré
,
G.
, and
Cuturi
,
M.
,
2018
, “
Learning Generative Models With Sinkhorn Divergences
,”
International Conference on Artificial Intelligence and Statistics (AISTATS 2018)
,
Lanzarote, Canary Islands, Spain
,
Apr. 9–11
,
PMLR
, pp.
1608
1617
.
28.
Noh
,
H.
,
Hong
,
S.
, and
Han
,
B.
,
2015
, “
Learning Deconvolution Network for Semantic Segmentation
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Santiago, Chile
,
Dec. 7–13
, pp.
1520
1528
.
29.
Taud
,
H.
, and
Mas
,
J.
,
2018
, “Multilayer Perceptron (MLP),”
Geomatic Approaches for Modeling Land Change Scenarios
,
Springer
,
Cham
, pp.
451
455
.
30.
Ba
,
J. L.
,
Kiros
,
J. R.
, and
Hinton
,
G. E.
,
2016
, “Layer Normalization,” preprint arXiv:1607.06450.
31.
Xu
,
J.
,
Li
,
Z.
,
Du
,
B.
,
Zhang
,
M.
, and
Liu
,
J.
,
2020
, “
Reluplex Made More Practical: Leaky Relu
,”
2020 IEEE Symposium on Computers and Communications (ISCC)
,
Rennes, France
,
July 7–10
,
IEEE
, pp.
1
7
.
32.
Luo
,
J.-H.
, and
Wu
,
J.
,
2020
, “
Neural Network Pruning With Residual-Connections and Limited-Data
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtual Online
,
June 14–19
, pp.
1458
1467
.
33.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26–July 1
, pp.
770
778
.
34.
Szegedy
,
C.
,
Ioffe
,
S.
,
Vanhoucke
,
V.
, and
Alemi
,
A. A.
,
2017
, “
Inception-v4, Inception-Resnet and the Impact of Residual Connections on Learning
,”
Thirty-First AAAI Conference on Artificial Intelligence
,
San Francisco, CA
,
Feb. 4–9
, pp.
4278
4284
.
35.
Veit
,
A.
,
Wilber
,
M. J.
, and
Belongie
,
S.
,
2016
, “
Residual Networks Behave Like Ensembles of Relatively Shallow Networks
,”
Advances in Neural Information Processing Systems
,
Barcelona, Spain
,
Dec. 5–10
, Vol. 29, pp.
550
558
.
36.
Munira
,
A.
,
Jaafar
,
N. N.
,
Fazilah
,
A. A.
, and
Nooraizedfiza
,
Z.
,
2014
, “
Review on Non Uniform Rational B-Spline (NURBS): Concept and Optimization
,”
Adv. Mater. Res.
,
903
, pp.
338
343
.
37.
Fisher
,
T.
, and
Wales
,
R.
,
1992
, “Three Dimensional Solid Modeling of Geo-objects Using Non-Uniform Rational B-Splines (NURBS),”
Three-Dimensional Modeling With Geoscientific Information Systems
,
A. K.
Turner
, ed.,
Springer
, Berlin, pp.
85
105
.
38.
Liang
,
X.
,
Wang
,
X.
,
Lei
,
Z.
,
Liao
,
S.
, and
Li
,
S. Z.
,
2017
, “
Soft-Margin Softmax for Deep Classification
,”
International Conference on Neural Information Processing
,
Guangzhou, China
,
Nov. 14–18
,
Springer
, pp.
413
421
.
39.
Balaji
,
Y.
,
Chellappa
,
R.
, and
Feizi
,
S.
,
2020
, “
Robust Optimal Transport With Applications in Generative Modeling and Domain Adaptation
,”
Advances in Neural Information Processing Systems
,
Virtual Online
,
Dec. 6–12
, Vol. 33, pp.
12934
12944
.
40.
Janocha
,
K.
, and
Czarnecki
,
W. M.
,
2017
, “On Loss Functions for Deep Neural Networks in Classification,” preprint arXiv:1702.05659.
41.
Peet
,
R. K.
,
1975
, “
Relative Diversity Indices
,”
Ecology
,
56
(
2
), pp.
496
498
.
42.
Chen
,
W.
, and
Fuge
,
M.
,
2019
, “
Synthesizing Designs With Interpart Dependencies Using Hierarchical Generative Adversarial Networks
,”
J. Mech. Des.
,
141
(
11
), p.
111403
.
43.
Borgwardt
,
K. M.
,
Gretton
,
A.
,
Rasch
,
M. J.
,
Kriegel
,
H.-P.
,
Schölkopf
,
B.
, and
Smola
,
A. J.
,
2006
, “
Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy
,”
Bioinformatics
,
22
(
14
), pp.
e49
e57
.
44.
Berlinet
,
A.
, and
Thomas-Agnan
,
C.
,
2011
,
Reproducing Kernel Hilbert Spaces in Probability and Statistics
,
Springer Science & Business Media
,
Berlin, Germany
.
You do not currently have access to this content.