Abstract

Mechanisms that transform simple rotational motion into desired motions are essential for robots and automobiles. Designing such mechanisms without any baseline is challenging because it requires determining both the topology and dimensions of link-joint connections. To address this issue, computationally efficient gradient-based synthesis methods using ground bar or block models have been developed to automatically determine both topology and dimensions. However, existing methods do not consider obstacle avoidance, limiting their applications. Obstacle avoidance is critical for reliable operation, preventing collisions with other components and ensuring efficient use of space. If revolute joints are relocated to avoid their intrusions, the mechanism will not function as planned. In this research, we propose a novel gradient-based method that incorporates obstacle avoidance into the automatic design of planar mechanisms. Our approach is to introduce a new obstacle avoidance constraint function in the spring-connected rigid-block-based formulation. The developed function assesses whether the revolute joints formed during optimization collide with obstacles. This enables the synthesis of mechanisms that adjust their topology and dimensions to avoid obstacles using a gradient-based optimization formulation, ensuring that revolute joints are placed away from obstacles. We demonstrate the effectiveness of our method with examples involving circular and rectangular obstacles. These results show that our approach produces mechanisms with adjusted topologies and dimensions that avoid collisions while the synthesized mechanisms generate the desired paths. Our research expands the practical applicability of the automated mechanism design, laying the groundwork for synthesizing a wide range of mechanisms.

References

1.
Khatib
,
O.
,
1986
, “
Real-Time Obstacle Avoidance for Manipulators and Mobile Robots
,”
Int. J. Rob. Res.
,
5
(
1
), pp.
90
98
.
2.
Scott
,
Nicholas A.
, and
Carignan
,
Craig R.
,
2008
, “
A Line-Based Obstacle Avoidance Technique for Dexterous Manipulator Operations
,”
2008 IEEE International Conference on Robotics and Automation (ICRA 2008)
,
Pasadena, CA
,
May 19–23
, pp.
1757
1764
.
3.
Kim
,
S. I.
,
Shin
,
D.
,
Han
,
S. M.
,
Kang
,
S. W.
,
Kwon
,
S.
,
Yi
,
Y. S.
, and
Kim
,
Y. Y.
,
2020
, “
A Novel Space-Constrained Vehicle Suspension Mechanism Synthesized by a Systematic Design Process Employing Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1497
1517
.
4.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Planar Articulated Mechanism Design by Graph Theoretical Enumeration
,”
Struct. Multidiscipl. Optim.
,
27
(
4
), pp.
295
299
.
5.
Stolpe
,
M.
, and
Kawamoto
,
A.
,
2005
, “
Design of Planar Articulated Mechanisms Using Branch and Bound
,”
Math. Program.
,
103
(
2
), pp.
357
397
.
6.
Wang
,
H.
,
Yu
,
W.
, and
Chen
,
G.
,
2017
, “
An Approach of Topology Optimization of Multi-rigid-body Mechanism
,”
Comput. Aided Des.
,
84
(
1
), pp.
39
55
.
7.
Liu
,
Y.
, and
McPhee
,
J.
,
2005
, “
Automated Type Synthesis of Planar Mechanisms Using Numeric Optimization With Genetic Algorithms
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
910
916
.
8.
Yoon
,
G. H.
, and
Heo
,
J. C.
,
2012
, “
Constraint Force Design Method for Topology Optimization of Planar Rigid-Body Mechanisms
,”
Comput. Aided Des.
,
44
(
12
), pp.
1277
1296
.
9.
Oliveto
,
J. C.
, and
Goodman
,
E. D.
,
2010
, “
Simultaneous Type and Dimensional Synthesis of Planar 1DOF Mechanisms Using Evolutionary Search and Convertible Agents
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031001
.
10.
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2014
, “
Topology Optimization of Planar Linkage Mechanisms
,”
Int. J. Numer. Methods Eng.
,
98
(
4
), pp.
265
286
.
11.
Kang
,
S. W.
,
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2016
, “
Topology Optimization of Planar Linkage Systems Involving General Joint Types
,”
Mech. Mach. Theory
,
104
(
1
), pp.
130
160
.
12.
Kang
,
S. W.
, and
Kim
,
Y. Y.
,
2018
, “
Unified Topology and Joint Types Optimization of General Planar Linkage Mechanisms
,”
Struct. Multidiscipl. Optim.
,
57
(
5
), pp.
1955
1983
.
13.
Kim
,
Y. Y.
,
Jang
,
G. W.
,
Park
,
J. H.
,
Hyun
,
J. S.
, and
Nam
,
S. J.
,
2007
, “
Automatic Synthesis of a Planar Mechanism With Revolute Joints by Using Spring-Connected Rigid Block Models
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
930
940
.
14.
Yu
,
J.
,
Han
,
S. M.
, and
Kim
,
Y. Y.
,
2020
, “
Simultaneous Shape and Topology Optimization of Planar Linkage Mechanisms Based on the Spring-Connected Rigid Block Model
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011401
.
15.
Yim
,
N. H.
,
Kang
,
S. W.
, and
Kim
,
Y. Y.
,
2019
, “
Topology Optimization of Planar Gear-Linkage Mechanisms
,”
ASME J. Mech. Des.
,
141
(
3
), p.
032301
.
16.
Kim
,
S. I.
,
Kang
,
S. W.
,
Yi
,
Y. S.
,
Park
,
J.
, and
Kim
,
Y. Y.
,
2018
, “
Topology Optimization of Vehicle Rear Suspension Mechanisms
,”
Int. J. Numer. Methods Eng.
,
113
(
8
), pp.
1412
1433
.
17.
Kim
,
J.
,
Shim
,
J. W.
,
Kang
,
S. W.
,
Kim
,
Y.
, and
Kim
,
Y. Y.
,
2024
, “
Automatic Synthesis of 1-DOF Transformable Wheel Mechanisms
,”
IEEE Trans. Rob.
,
40
(
1
), pp.
101
120
.
18.
Yu
,
J.
,
Kang
,
S. W.
, and
Kim
,
Y. Y.
,
2025
, “
Autonomous Synthesis of Self-aligning Knee Joint Exoskeleton Mechanisms
,”
IEEE Trans. Rob.
,
41
(
3
), pp.
2358
2373
.
19.
Luo
,
R.
,
Wu
,
P.
,
Yu
,
Z.
, and
Hou
,
Z.
,
2023
, “
An Overlapped Plane Model and Topology Optimization for Planar Mechanism Synthesis
,”
Comput. Struct.
,
281
(
1
), p.
107019
.
20.
Tran
,
Q. D.
, and
Jang
,
G. W.
,
2023
, “
Topology Optimization of Linkage Mechanisms Using Spring-Connected Link Model
,”
Struct. Multidiscipl. Optim.
,
67
(
8
), pp.
1
20
.
21.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2011
,
Geometric Design of Linkages
,
Springer Science & Business Media
,
New York
.
22.
Svanberg
,
K.
,
2005
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
23.
Ratliff
,
N.
,
Zucker
,
M.
,
Bagnell
,
J. A.
, and
Srinivasa
,
S.
,
2009
, “
CHOMP: Gradient Optimization Techniques for Efficient Motion Planning
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
489
494
.
24.
Schulman
,
J.
,
Ho
,
J.
,
Lee
,
A.
,
Awwal
,
I.
,
Bradlow
,
H.
, and
Abbeel
,
P.
,
2013
, “
Finding Locally Optimal, Collision-Free Trajectories With Sequential Convex Optimization
,”
Robotics: Science and Systems (RSS)
,
Berlin, Germany
,
June 24–28
.
25.
Gilbert
,
E. G.
,
Johnson
,
D. W.
, and
Keerthi
,
S. S.
,
1988
, “
A Fast Procedure for Computing the Distance Between Complex Objects in Three-Dimensional Space
,”
IEEE J. Rob. Autom.
,
4
(
2
), pp.
193
203
.
26.
van den Bergen
,
G.
,
1999
, “
A Fast and Robust GJK Implementation for Collision Detection of Convex Objects
,”
J. Graph. Tools
,
4
(
2
), pp.
7
25
.
You do not currently have access to this content.