Abstract

Compliant constant-force grippers are key devices for manipulating micro-sized objects without damage in micro-operation/assembly systems. This article introduces a multistage amplification compliant adjustable constant-force gripper utilizing M-shaped beams and inclined beams. A multistage amplification mechanism is devised to achieve a high amplification ratio and a sufficient stroke, while a preloading mechanism driven by a micrometer is designed for constant-force adjustment. The constant-force mechanism and the amplification mechanisms are modeled by the large deflection analysis based on the elliptic integral method and the compliance matrix method. In addition, a series of simulations and experiments are carried out to demonstrate the working performance of the gripper. The experimental results show that the gripper exhibits an amplification ratio of 66.66, a stroke of 1.79 mm, a constant-force output of 0.112–2.452 N, and a maximum constant-force displacement of 0.841 mm. It shows appropriate results in terms of the discrepancies between the theory and experiments.

References

1.
Zhang
,
Z.
,
Wang
,
X.
,
Liu
,
J.
,
Dai
,
C.
, and
Sun
,
Y.
,
2019
, “
Robotic Micromanipulation: Fundamentals and Applications
,”
Ann. Rev. Control Rob. Auton. Syst.
,
2
(
1
), pp.
181
203
.
2.
Cecil
,
J.
,
Powell
,
D.
, and
Vasquez
,
D.
,
2007
, “
Assembly and Manipulation of Micro Devices-A State of the Art Survey
,”
Rob. Comput.-Integr. Manufact.
,
23
(
5
), pp.
580
588
.
3.
Dechev
,
N.
,
Cleghorn
,
W. L.
, and
Mills
,
J. K.
,
2004
, “
Microassembly of 3-D Microstructures Using a Compliant, Passive Microgripper
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
176
189
.
4.
Howell
,
L. L.
,
Magleby
,
S. P.
,
Olsen
,
B. M.
, and
Wiley
,
J.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
,
Chichester, West Sussex, UK
.
5.
Lobontiu
,
N.
,
2014
, “
Compliance-Based Modeling and Design of Straight-Axis/Circular-Axis Flexible Hinges With Small Out-of-Plane Deformations
,”
Mech. Mach. Theory
,
80
, pp.
166
183
.
6.
Panepucci
,
R. R.
, and
Martinez
,
J. A.
,
2008
, “
Novel Su-8 Optical Waveguide Microgripper for Simultaneous Micromanipulation and Optical Detection
,”
J. Vac. Sci. Technol. B: Microelect. Nano. Struct. Process., Measure. Phenomena
,
26
(
6
), pp.
2624
2627
.
7.
Ananthasuresh
,
G.
,
Maheswari
,
N.
,
Reddy
,
A. N.
, and
Sahu
,
D.
,
2009
, “Fabrication of Spring Steel and PDMS Grippers for the Micromanipulation of Biological Cells,”
Microfluidics and Microfabrication
,
Springer
,
Boston, MA
, pp.
333
354
.
8.
Zhang
,
R.
,
Chu
,
J.
,
Wang
,
H.
, and
Chen
,
Z.
,
2013
, “
A Multipurpose Electrothermal Microgripper for Biological Micro-Manipulation
,”
Microsyst. Technol.
,
19
, pp.
89
97
.
9.
Lu
,
K.
,
Zhang
,
J.
,
Chen
,
W.
,
Jiang
,
J.
, and
Chen
,
W.
,
2014
, “
A Monolithic Microgripper With High Efficiency and High Accuracy for Optical Fiber Assembly
,”
2014 9th IEEE Conference on Industrial Electronics and Applications
,
Hangzhou, China
,
June 9–11
, IEEE, pp.
1942
1947
.
10.
Wei
,
Y.
, and
Xu
,
Q.
,
2018
, “
A Survey of Force-Assisted Robotic Cell Microinjection Technologies
,”
IEEE Trans. Auto. Sci. Eng.
,
16
(
2
), pp.
931
945
.
11.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory.
,
119
, pp.
1
21
.
12.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
, p.
103622
.
13.
Ling
,
J.
,
Ye
,
T.
,
Feng
,
Z.
,
Zhu
,
Y.
,
Li
,
Y.
, and
Xiao
,
X.
,
2022
, “
A Survey on Synthesis of Compliant Constant Force/Torque Mechanisms
,”
Mech. Mach. Theory
,
176
, p.
104970
.
14.
Wang
,
P.
, and
Xu
,
Q.
,
2017
, “
Design of a Flexure-Based Constant-Force XY Precision Positioning Stage
,”
Mech. Mach. Theory
,
108
, pp.
1
13
.
15.
Liu
,
Y.
, and
Xu
,
Q.
,
2016
, “
Design and Analysis of a Micro-Gripper With Constant Force Mechanism
,”
2016 12th World Congress on Intelligent Control and Automation (WCICA)
,
Guilin, China
,
June 12–15
, IEEE, pp.
2142
2147
.
16.
Liu
,
Y.
, and
Xu
,
Q.
,
2017
, “
Design of a 3D-Printed Polymeric Compliant Constant-Force Buffering Gripping Mechanism
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE, pp.
6706
6711
.
17.
Zhang
,
X.
, and
Xu
,
Q.
,
2019
, “
Design and Development of a New 3-DOF Active-Type Constant-Force Compliant Parallel Stage
,”
Mech. Mach. Theory
,
140
, pp.
654
665
.
18.
Xu
,
H.
,
Zhang
,
X.
,
Wang
,
R.
,
Zhang
,
H.
, and
Liang
,
J.
,
2023
, “
Design of an SMA-Driven Compliant Constant-Force Gripper Based on a Modified Chained Pseudo-Rigid-Body Model
,”
Mech. Mach. Theory
,
187
, p.
105371
.
19.
Liu
,
Y.
, and
Xu
,
Q.
,
2016
, “
Design of a Compliant Constant Force Gripper Mechanism Based on Buckled Fixed-Guided Beam
,”
2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)
,
Paris, France
,
July 18–22
, IEEE, pp.
1
6
.
20.
Zhang
,
X.
, and
Xu
,
Q.
,
2019
, “
Design and Testing of a Novel 2-DOF Compound Constant-Force Parallel Gripper
,”
Precis. Eng.
,
56
, pp.
53
61
.
21.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.
22.
Ding
,
B.
,
Li
,
X.
, and
Li
,
Y.
,
2022
, “
Configuration Design and Experimental Verification of a Variable Constant-Force Compliant Mechanism
,”
Robotica
,
40
(
10
), pp.
3463
3475
.
23.
He
,
J.
,
Liu
,
Y.
,
Yang
,
C.
,
Tong
,
Z.
, and
Wang
,
G.
,
2023
, “
Design and Evaluation of an Adjustable Compliant Constant-Force Microgripper
,”
Micromachines
,
15
(
1
), p.
52
.
24.
Xu
,
H.
,
Zhang
,
X.
,
Wang
,
R.
,
Liang
,
J.
, and
Du
,
J.
,
2023
, “
Synthesis of an SMA-Actuated Adjustable-Magnitude Compliant Constant-Force Mechanism
,”
IFToMM World Congress on Mechanism and Machine Science
,
Tokyo, Japan
,
Nov. 5–10
, Springer, pp.
420
430
.
25.
Liu
,
Y.
,
Yu
,
D.-p.
, and
Yao
,
J.
,
2016
, “
Design of an Adjustable CAM Based Constant Force Mechanism
,”
Mech. Mach. Theory
,
103
, pp.
85
97
.
26.
Kuo
,
Y.-L.
, and
Lan
,
C.-C.
,
2020
, “
A Two-Dimensional Adjustable Constant-Force Mechanism
,”
ASME J. Mech. Des.
,
142
(
6
), p.
063304
.
27.
Lambert
,
P.
, and
Herder
,
J. L.
,
2016
, “
An Adjustable Constant Force Mechanism Using Pin Joints and Springs
,”
International Conference on Mechanism Science
,
Nantes, France
,
Sept. 20–23
, Springer, pp.
453
461
.
28.
Midha
,
A.
,
Murphy
,
M. D.
, and
Howell
,
L. L.
,
1997
, “
Compliant Constant-Force Mechanism and Devices Formed Therewith
,” July 22 US Patent 5649454.
29.
Sugar
,
T.
, and
Hollander
,
K.
,
2011
, “Adjustable Stiffness Jack Spring Actuator,” Aug. 9 US Patent 7992849.
30.
Lan
,
C.-C.
,
Yang
,
S.-A.
, and
Wu
,
Y.-S.
,
2014
, “
Design and Experiment of a Compact Quasi-Zero-Stiffness Isolator Capable of a Wide Range of Loads
,”
J. Sound Vib.
,
333
(
20
), pp.
4843
4858
.
31.
Rehman
,
T. U.
,
Li
,
J.
,
Qaiser
,
Z.
, and
Johnson
,
S.
,
2024
, “
A Design Framework for Semi-Active Structural Controlled Adjustable Constant Force Mechanisms
,”
ASME J. Mech. Des.
,
146
(
7
), p.
073301
.
32.
Qaiser
,
Z.
, and
Johnson
,
S.
,
2023
, “
Slenderness Tuning to Adjust and Regulate Constant Force Mechanisms (STAR-CFM)
,”
Mech. Mach. Theory
,
186
, p.
105351
.
33.
Nahar
,
D. R.
, and
Sugar
,
T.
,
2003
, “
Compliant Constant-Force Mechanism With a Variable Output for Micro/Macro Applications
,”
2003
IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422)
, Vol.
1
,
IEEE
, pp.
318
323
.
34.
Hao
,
G.
,
Mullins
,
J.
, and
Cronin
,
K.
,
2017
, “
Simplified Modelling and Development of a Bi-Directionally Adjustable Constant-Force Compliant Gripper
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
231
(
11
), pp.
2110
2123
.
35.
Gan
,
J.
,
Xu
,
H.
,
Zhang
,
X.
, and
Ding
,
H.
,
2022
, “
Design of a Compliant Adjustable Constant-Force Gripper Based on Circular Beams
,”
Mech. Mach. Theory
,
173
, p.
104843
.
36.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Chen
,
G.
,
2020
, “
Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey
,”
ASME Appl. Mech. Rev.
,
72
(
3
), p.
030802
.
37.
Koseki
,
Y.
,
Tanikawa
,
T.
,
Koyachi
,
N.
, and
Arai
,
T.
,
2000
, “
Kinematic Analysis of Translational 3-DOF Micro Parallel Mechanism Using Matrix Method
,”
Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000)
(Cat. No. 00CH37113), Vol.
1
,
IEEE
, pp.
786
792
.
38.
Yu
,
J.
,
Bi
,
S.
,
Pei
,
X.
,
2018
, “
Flexure Design: Analysis and Synthesis of Compliant Mechanism
.”
39.
Wan
,
L.
,
Long
,
J.
,
Zhang
,
J.
, and
Gan
,
J.
,
2022
, “
Design of a 3DOF XYZ Precision Positioning Platform Using Novel Z-Shaped Flexure Hinges
,”
International Conference on Mechanism and Machine Science
,
Yantai, China
,
July 30–Aug. 1
, Springer, pp.
569
592
.
40.
Ai
,
W.
, and
Xu
,
Q.
,
2014
, “
New Structural Design of a Compliant Gripper Based on the Scott-Russell Mechanism
,”
Inter. J. Adv. Rob. Syst.
,
11
(
12
), p.
192
.
41.
Tian
,
Y.
,
Shirinzadeh
,
B.
,
Zhang
,
D.
, and
Alici
,
G.
,
2009
, “
Development and Dynamic Modelling of a Flexure-Based Scott–Russell Mechanism for Nano-Manipulation
,”
Mech. Syst. Signal Process.
,
23
(
3
), pp.
957
978
.
42.
Ma
,
H.-W.
,
Yao
,
S.-M.
,
Wang
,
L.-Q.
, and
Zhong
,
Z.
,
2006
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Flexure Hinge
,”
Sens. Actuat. A
,
132
(
2
), pp.
730
736
.
43.
Qi
,
K.-Q.
,
Xiang
,
Y.
,
Fang
,
C.
,
Zhang
,
Y.
, and
Yu
,
C.-S.
,
2015
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Mechanism
,”
Mech. Mach. Theory
,
87
, pp.
45
56
.
44.
Jouaneh
,
M.
, and
Yang
,
R.
,
2003
, “
Modeling of Flexure-Hinge Type Lever Mechanisms
,”
Precis. Eng.
,
27
(
4
), pp.
407
418
.
45.
Liu
,
Y.
,
Zhang
,
Y.
, and
Xu
,
Q.
,
2016
, “
Design and Control of a Novel Compliant Constant-Force Gripper Based on Buckled Fixed-Guided Beams
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
476
486
.
46.
Ye
,
T.
,
Ling
,
J.
,
Kang
,
X.
,
Feng
,
Z.
, and
Xiao
,
X.
,
2021
, “
A Novel Two-Stage Constant Force Compliant Microgripper
,”
ASME J. Mech. Des.
,
143
(
5
), p.
053302
.
47.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
.
You do not currently have access to this content.