Abstract

Digital twin (DT) modeling technology is the core for accurately portraying physical entities. It provides decision-makers and managers with real-time monitoring, simulation, and optimization capabilities, thus enhancing their understanding and control over complex systems. However, DT modeling techniques for local nonlinear contact structures in structural health monitoring have yet to be thoroughly investigated since repetition and redundancy in simulation processes in existing approaches. To address these issues, we propose a novel approach, called the data-driven hybrid modeling (DDHM) method, which can effectively settle contact nonlinear dynamic problems in structural health monitoring. This approach leverages a nonlinear force prediction model, modal reduction, and kernel functions to represent and analyze nonlinear dynamic structural behaviors efficiently. The DDHM method combines physics-based principles with data-driven modeling approaches to connect the physical and digital worlds and facilitate accurate and efficient analysis of intricate structural systems. To assess its effectiveness, the method is tested on two numerical examples: flat plates and telescopic boom. The findings demonstrate that the DDHM method achieves a lower online computational cost and satisfactory accuracy compared to both the finite element method (FEM) and traditional reduced-order models, thereby improving the computational efficiency in digital twin modeling of large-scale nonlinear structures.

References

1.
Vaidya
,
S.
,
Ambad
,
P.
, and
Bhosle
,
S.
,
2018
, “
Industry 4.0—A Glimpse
,”
Procedia Manuf.
,
20
, pp.
233
238
.
2.
Rosen
,
M. A.
, and
Kishawy
,
H. A.
,
2012
, “
Sustainable Manufacturing and Design: Concepts, Practices and Needs
,”
Sustainability
,
4
(
2
), pp.
154
174
.
3.
Wu
,
D.
,
Rosen
,
D. W.
,
Wang
,
L.
, and
Schaefer
,
D.
,
2015
, “
Cloud-Based Design and Manufacturing: A New Paradigm in Digital Manufacturing and Design Innovation
,”
Comput. Aided Des.
,
59
, pp.
1
14
.
4.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y.
,
2018
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2405
2415
.
5.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
, “Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems,”
Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches
,
F. J.
Kahlen
,
S.
Flumerfelt
, and
A.
Alves
, eds.,
Springer Cham
,
Switzerland
, pp.
85
113
.
6.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and US Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA
,
Honolulu, HI
,
June 14
, p.
1818
.
7.
Peng
,
H.
,
Yan
,
J.
,
Yu
,
Y.
, and
Luo
,
Y.
,
2021
, “
Time Series Estimation Based on Deep Learning for Structural Dynamic Nonlinear Prediction
,”
Structures
,
29
, pp.
1016
1031
.
8.
Angjeliu
,
G.
,
Coronelli
,
D.
, and
Cardani
,
G.
,
2020
, “
Development of the Simulation Model for Digital Twin Applications in Historical Masonry Buildings: The Integration Between Numerical and Experimental Reality
,”
Comput. Struct.
,
238
, p.
106282
.
9.
Wagg
,
D.
,
Worden
,
K.
,
Barthorpe
,
R.
, and
Gardner
,
P.
, “
Digital Twins: State-of-the-Art and Future Directions for Modelling and Simulation in Engineering Dynamics Applications
,”
ASME J. Risk. Uncertain Part B
,
6
(
3
), p.
030901
.
10.
Wei
,
Y.
,
Hu
,
T.
,
Zhou
,
T.
,
Ye
,
Y.
, and
Luo
,
W.
,
2021
, “
Consistency Retention Method for CNC Machine Tool Digital Twin Model
,”
J. Manuf. Syst.
,
58
, pp.
313
322
.
11.
He
,
W.
,
Mao
,
J.
,
Song
,
K.
,
Li
,
Z.
,
Su
,
Y.
,
Wang
,
Y.
, and
Pan
,
X.
,
2023
, “
Structural Performance Prediction Based on the Digital Twin Model: A Battery Bracket Example
,”
Reliab. Eng. Syst. Saf.
,
229
, p.
108874
.
12.
Cui
,
L.
,
Xiao
,
Y.
,
Liu
,
D.
, and
Han
,
H.
,
2024
, “
Digital Twin-Driven Graph Domain Adaptation Neural Network for Remaining Useful Life Prediction of Rolling Bearing
,”
Reliab. Eng. Syst. Saf.
,
245
, p.
109991
.
13.
Huang
,
X.
,
Peng
,
Z.
,
Tang
,
D.
,
Chen
,
J.
,
Zio
,
E.
, and
Zheng
,
Z.
,
2024
, “
A Physics-Informed Autoencoder for System Health State Assessment Based on Energy-Oriented System Performance
,”
Reliab. Eng. Syst. Saf.
,
242
, p.
109790
.
14.
Zhou
,
M.
,
Li
,
Y.
,
Cao
,
Y.
,
Ma
,
X.
, and
Xu
,
Z.
,
2025
, “
Physics-Informed Spatio-Temporal Hybrid Neural Networks for Predicting Remaining Useful Life in Aircraft Engine
,”
Reliab. Eng. Syst. Saf.
,
256
, p.
110685
.
15.
Kapteyn
,
M. G.
,
Knezevic
,
D. J.
,
Huynh
,
D. B. P.
,
Tran
,
M.
, and
Willcox
,
K. E.
,
2022
, “
Data-Driven Physics-Based Digital Twins via a Library of Component-Based Reduced-Order Models
,”
Int. J. Numer. Methods Eng.
,
123
(
13
), pp.
2986
3003
.
16.
He
,
X.
,
Lai
,
X.
,
Li
,
K.
,
Wang
,
S.
,
Song
,
X.
, and
Sun
,
W.
,
2024
, “
Toward a Shape-Performance Integrated Digital Twin Based on Hybrid Reduced-Order Modeling for Engineering Structures
,”
Eng. Comput.
,
40
(
2
), pp.
1157
1175
.
17.
Kim
,
W.
, and
Youn
,
B. D.
,
2025
, “
Physics-Based Digital Twin Updating and Twin-Based Explainable Crack Identification of Mechanical Lap Joint
,”
Reliab. Eng. Syst. Saf.
,
253
, p.
110515
.
18.
Corral
,
E.
,
Moreno
,
R. G.
,
García
,
M. G.
, and
Castejón
,
C.
,
2021
, “
Nonlinear Phenomena of Contact in Multibody Systems Dynamics: A Review
,”
Nonlinear Dyn.
,
104
(
2
), pp.
1269
1295
.
19.
Gastaldi
,
C.
,
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2018
, “
Jacobian Projection Reduced-Order Models for Dynamic Systems With Contact Nonlinearities
,”
Mech. Syst. Signal Process
,
100
, pp.
550
569
.
20.
Delhez
,
E.
,
Nyssen
,
F.
,
Golinval
,
J.-C.
, and
Batailly
,
A.
,
2021
, “
Reduced Order Modeling of Blades With Geometric Nonlinearities and Contact Interactions
,”
J. Sound Vib.
,
500
, p.
116037
.
21.
Yuan
,
J.
,
El-Haddad
,
F.
,
Salles
,
L.
, and
Wong
,
C.
,
2019
, “
Numerical Assessment of Reduced Order Modeling Techniques for Dynamic Analysis of Jointed Structures With Contact Nonlinearities
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031027
.
22.
Hollkamp
,
J. J.
, and
Gordon
,
R. W.
,
2008
, “
Reduced-Order Models for Nonlinear Response Prediction: Implicit Condensation and Expansion
,”
J. Sound Vib.
,
318
(
4–5
), pp.
1139
1153
.
23.
Kuether
,
R. J.
,
Deaner
,
B. J.
,
Hollkamp
,
J. J.
, and
Allen
,
M. S.
,
2015
, “
Evaluation of Geometrically Nonlinear Reduced-Order Models With Nonlinear Normal Modes
,”
AIAA J.
,
53
(
11
), pp.
3273
3285
.
24.
Jain
,
S.
,
Tiso
,
P.
,
Rutzmoser
,
J. B.
, and
Rixen
,
D. J.
,
2017
, “
A Quadratic Manifold for Model Order Reduction of Nonlinear Structural Dynamics
,”
Comput. Struct.
,
188
, pp.
80
94
.
25.
Cenedese
,
M.
,
Axås
,
J.
,
Yang
,
H.
,
Eriten
,
M.
, and
Haller
,
G.
,
2022
, “
Data-Driven Nonlinear Model Reduction to Spectral Submanifolds in Mechanical Systems
,”
Phil. Trans. R. Soc. A
,
380
(
2229
), p.
20210194
.
26.
Cenedese
,
M.
,
Axås
,
J.
,
Bäuerlein
,
B.
,
Avila
,
K.
, and
Haller
,
G.
,
2022
, “
Data-Driven Modeling and Prediction of Non-Linearizable Dynamics via Spectral Submanifolds
,”
Nat. Commun.
,
13
(
1
), p.
872
.
27.
He
,
X.
,
Li
,
K.
,
Wang
,
S.
,
Lai
,
X.
,
Yang
,
L.
,
Kan
,
Z.
, and
Song
,
X.
,
2024
, “
Toward an Online Monitoring of Structural Performance Based on Physics-Informed Hybrid Modeling Method
,”
ASME J. Mech. Des.
,
146
(
1
), p.
011702
.
28.
Chen
,
H.
,
Huang
,
L.
,
Yang
,
L.
,
Chen
,
Y.
, and
Huang
,
J.
,
2020
, “
Model-Based Method With Nonlinear Ultrasonic System Identification for Mechanical Structural Health Assessment
,”
Trans. Emerging Telecommun. Technol.
,
31
(
12
), p.
3955
.
29.
Noël
,
J. P.
,
Renson
,
L.
,
Kerschen
,
G.
,
Peeters
,
B.
,
Manzato
,
S.
, and
Debille
,
J.
,
2014
, “
Nonlinear Dynamic Analysis of an F-16 Aircraft Using GVT Data
,”
International Forum on Aeroelasticity and Structural Dynamics, IFASD 2013
,
Bristol, UK
,
June 24
, Royal Aeronautical Society, pp.
990
1002
.
30.
Savković
,
M.
,
Gašić
,
M.
,
Pavlović
,
G.
,
Bulatović
,
R.
, and
Zdravković
,
N.
,
2014
, “
Stress Analysis in Contact Zone Between the Segments of Telescopic Booms of Hydraulic Truck Cranes
,”
Thin-Walled Struct.
,
85
, pp.
332
340
.
31.
Xia
,
Z.
,
Qiao
,
G.
,
Zheng
,
T.
, and
Zhang
,
W.
,
2009
, “
Nonlinear Modeling and Dynamic Analysis of the Rotor-Bearing System
,”
Nonlinear Dyn.
,
57
(
4
), pp.
559
577
.
32.
Mashayekhi
,
F.
,
Zucca
,
S.
, and
Nobari
,
A. S.
,
2021
, “
Upgraded Reduction Technique for Dynamic Analysis of Structures With Friction Contact
,”
AIAA J.
,
59
(
1
), pp.
345
355
.
33.
Park
,
K.
, and
Allen
,
M. S.
,
2021
, “
Quasi-Static Modal Analysis for Reduced Order Modeling of Geometrically Nonlinear Structures
,”
J. Sound Vib.
,
502
, p.
116076
.
34.
Hughes
,
P. J.
, and
Kuether
,
R. J.
,
2021
, “
Nonlinear Interface Reduction for Time-Domain Analysis of Hurty/Craig-Bampton Superelements With Frictional Contact
,”
J. Sound Vib.
,
507
, p.
116154
.
35.
Kuether
,
R. J.
, and
Allen
,
M. S.
,
2014
, “
A Numerical Approach to Directly Compute Nonlinear Normal Modes of Geometrically Nonlinear Finite Element Models
,”
Mech. Syst. Signal Process
,
46
(
1
), pp.
1
15
.
36.
Loh
,
W. L.
,
1996
, “
On Latin Hypercube Sampling
,”
Ann. Stat.
,
24
(
5
), pp.
2058
2080
.
37.
Park
,
J. S.
,
1994
, “
Optimal Latin-Hypercube Designs for Computer Experiments
,”
J. Stat. Plann. Inference
,
39
(
1
), pp.
95
111
.
38.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscipl. Optim.
,
23
(
1
), pp.
1
13
.
39.
Zhang
,
J.
,
Chowdhury
,
S.
, and
Messac
,
A.
,
2012
, “
An Adaptive Hybrid Surrogate Model
,”
Struct. Multidiscipl. Optim.
,
46
(
2
), pp.
223
238
.
40.
Zhang
,
Z.
,
Liu
,
M.
,
Zhou
,
M.
, and
Chen
,
J.
,
2020
, “
Dynamic Reliability Analysis of Nonlinear Structures Using a Duffing-System-Based Equivalent Nonlinear System Method
,”
Int. J. Approximate Reasoning
,
126
, pp.
84
97
.
41.
He
,
X.
,
Lai
,
X.
,
Yang
,
L.
,
Zhang
,
F.
,
Zhou
,
D.
,
Song
,
X.
, and
Sun
,
W.
,
2022
, “
M-LFM: A Multi-Level Fusion Modeling Method for Shape-Performance Integrated Digital Twin of Complex Structure
,”
Front. Mech. Eng.
,
17
(
4
), p.
52
.
42.
Yao
,
J.
,
Xing
,
F.
,
Fu
,
Y.
,
Qiu
,
X.
,
Zhou
,
Z.
, and
Hou
,
J.
,
2017
, “
Failure Analysis of Torsional Buckling of All-Terrain Crane Telescopic Boom Section
,”
Eng. Fail. Anal.
,
73
, pp.
72
84
.
You do not currently have access to this content.