Abstract

This article investigates the cognitive load (CL) in the underexplored context of computer-aided design (CAD), focusing on identifying the most effective electroencephalography (EEG) features for measuring CL variations. While previous research has demonstrated that the EEG can distinguish between CL levels in various domains, there is limited understanding of whether existing EEG-based indicators can accurately reflect CL changes in CAD activities. To address this gap, the study first extracted a list of potential EEG-based CL indicators from the literature and then evaluated their applicability to CAD tasks through an experimental study involving 24 engineering designers performing CAD modeling tasks of varying complexity. The experimental study employed two complementary methods: NASA TLX as a subjective measurement and EEG as a psychophysiological measurement, enabling a comprehensive analysis of the CL in CAD tasks by validating and comparing the findings from both methods. The results revealed six EEG features sensitive to changes in the CL, with an increase in parietal alpha task-related power emerging as the most prominent indicator. This study makes a novel contribution by examining the relationship between the EEG-based CL indicators and the NASA TLX scores, highlighting meaningful correlations, and emphasizing the importance of both frequency bands and cortical areas when interpreting EEG signals in relation to CL.

References

1.
Ullman
,
D. G.
,
2002
, “
Toward the Ideal Mechanical Engineering Design Support System
,”
Res. Eng. Des.—Theory, Appl. Concurr. Eng.
,
13
(
2
), pp.
55
64
.
2.
Robertson
,
D.
,
Ulrich
,
K.
, and
Filerman
,
M.
,
1991
,
Cognitive Complexity and CAD Systems: Beyond the Drafting Board Metaphor
,
Cambridge, MA
, WP #3244-91-MSA.
3.
Kahneman
,
D.
,
1973
,
Attention and Effort
,
Prentice-Hall Inc.
,
Englewood Cliffs, NJ
.
4.
Sweller
,
J.
,
Ayres
,
P.
, and
Kalyuga
,
S.
,
2011
,
Cognitive Load Theory
,
Springer
,
New York
.
5.
Calpin
,
N.
, and
Menold
,
J.
,
2023
, “
The Cognitive Costs of Design Tasks: Examining Cognitive Load Through Verbal and Physical Indicators
,”
ASME J. Mech. Des.
,
145
(
10
), p. 101401.
6.
Cass
,
M.
, and
Prabhu
,
R.
,
2025
, “
Looking Beyond Self-Reported Cognitive Load: Comparing Pupil Diameter Against Self-Reported Cognitive Load in Design Tasks
,”
ASME J. Mech. Des.
,
147
(
4
), p.
044503
.
7.
Antonenko
,
P.
,
Paas
,
F.
,
Grabner
,
R.
, and
van Gog
,
T.
,
2010
, “
Using Electroencephalography to Measure Cognitive Load
,”
Educ. Psychol. Rev.
,
22
(
4
), pp.
425
438
.
8.
Gevins
,
A.
,
Smith
,
M. E.
,
Leong
,
H.
,
McEvoy
,
L.
,
Whitfield
,
S.
,
Du
,
R.
, and
Rush
,
G.
,
1998
, “
Monitoring Working Memory Load During Computer-Based Tasks With EEG Pattern Recognition Methods
,”
Hum. Factors
,
40
(
1
), pp.
79
91
.
9.
Sivanathan
,
A.
,
Lim
,
T.
,
Ritchie
,
J.
,
Sung
,
R.
,
Kosmadoudi
,
Z.
, and
Liu
,
Y.
,
2015
, “
The Application of Ubiquitous Multimodal Synchronous Data Capture in CAD
,”
CAD Comput. Aided Des.
,
59
, pp.
176
191
.
10.
Gero
,
J.
, and
Milovanovic
,
J.
,
2020
, “
A Framework for Studying Design Thinking Through Measuring Designers’ Minds, Bodies and Brains
,”
Des. Sci.
,
6
, pp.
1
40
.
11.
Jasper
,
H. H.
,
1958
, “
The Ten-Twenty Electrode System of the International Federation
,”
Electroencephalogr. Clin. Neurophysiol.
,
10
, pp.
370
375
.
12.
Gevins
,
A. S.
, and
Morgan
,
N. H.
,
1986
, “
Classifier-Directed Signal Processing in Brain Research
,”
IEEE Trans. Biomed. Eng.
,
BME-33
(
12
), pp.
1054
1068
.
13.
Gevins
,
A.
, and
Smith
,
M. E.
,
2003
, “
Neurophysiological Measures of Cognitive Workload During Human-Computer Interaction
,”
Theor. Issues Ergon. Sci.
,
4
(
1–2
), pp.
113
131
.
14.
Chikhi
,
S.
,
Matton
,
N.
, and
Blanchet
,
S.
,
2022
, “
EEG Power Spectral Measures of Cognitive Workload: A Meta-Analysis
,”
Psychophysiology
,
59
(
6
), pp.
1
24
.
15.
Matthews
,
G.
,
Reinerman-Jones
,
L. E.
,
Barber
,
D. J.
, and
Abich
,
J.
,
2015
, “
The Psychometrics of Mental Workload: Multiple Measures Are Sensitive But Divergent
,”
Hum. Factors
,
57
(
1
), pp.
125
143
.
16.
Jia
,
W.
,
von Wegner
,
F.
,
Zhao
,
M.
, and
Zeng
,
Y.
,
2021
, “
Network Oscillations Imply the Highest Cognitive Workload and Lowest Cognitive Control During Idea Generation in Open-Ended Creation Tasks
,”
Sci. Rep.
,
11
(
1
), pp.
1
24
.
17.
Zimmerer
,
C.
, and
Matthiesen
,
S.
,
2021
, “
Study on the Impact of Cognitive Load on Performance in Engineering Design
,”
Proc. Des. Soc.
,
1
(
Aug.
), pp.
2761
2770
.
18.
Majdic
,
B.
,
Cowan
,
C.
,
Girdner
,
J.
,
Opoku
,
W.
,
Pierrakos
,
O.
, and
Barrella
,
E.
,
2017
, “
Monitoring Brain Waves in an Effort to Investigate Student‘s Cognitive Load During a Variety of Problem Solving Scenarios
,”
Systems and Information Engineering Design Symposium (SIEDS)
,
Charlottesville, VA
,
Apr. 28
,
IEEE
, pp.
186
191
.
19.
Bilda
,
Z.
,
Gero
,
J. S.
, and
Purcell
,
T.
,
2006
, “
To Sketch or Not To Sketch? That Is the Question
,”
Des. Stud.
,
27
(
5
), pp.
587
613
.
20.
Mohamed-Ahmed
,
A.
,
Bonnardel
,
N.
,
Côté
,
P.
, and
Tremblay
,
S.
,
2013
, “
Cognitive Load Management and Architectural Design Outcomes
,”
Int. J. Des. Creat. Innov.
,
1
(
3
), pp.
160
176
.
21.
Dadi
,
G. B.
,
Goodrum
,
P. M.
,
Taylor
,
T. R. B.
, and
Carswell
,
C. M.
,
2014
, “
Cognitive Workload Demands Using 2D and 3D Spatial Engineering Information Formats
,”
J. Constr. Eng. Manage.
,
140
(
5
), pp.
1
8
.
22.
Shealy
,
T.
,
Gero
,
J.
,
Hu
,
M.
, and
Milovanovic
,
J.
,
2020
, “
Concept Generation Techniques Change Patterns of Brain Activation During Engineering Design
,”
Des. Sci.
,
6
, p.
e31
.
23.
Chandrasekera
,
T.
, and
Yoon
,
S. Y.
,
2015
, “
The Effect of Tangible User Interfaces on Cognitive Load in the Creative Design Process
,”
Proceedings of 2015 IEEE International Symposium on Mixed and Augmented Reality—Media, Art, Social Science, Humanities and Design
,
Fukuoka, Japan
,
Sept. 29–Oct. 3
, pp.
6
8
.
24.
Baig
,
M. Z.
, and
Kavakli
,
M.
,
2019
, “
Analyzing Novice and Expert User's Cognitive Load in Using a Multi-modal Interface System
,”
2018 26th International Conference on Systems Engineering (ICSEng)
,
Sydney, Australia
,
Dec. 18–20
, pp.
1
7
.
25.
Cass
,
M.
, and
Prabhu
,
R.
,
2023
, “
Looking Beyond Self-Reported Cognitive Load: Investigating the Use of Eye Tracking in the Study of Design Representations in Engineering Design
,”
Proc. Des. Soc.
,
3
(
July
), pp.
2475
2484
.
26.
Sun
,
G.
, and
Yao
,
S.
,
2012
, “
Investigating the Relation Between Cognitive Load and Creativity in the Conceptual Design Process
,”
Proc. Hum. Factors Ergon. Soc.
,
56
(
1
), pp.
308
312
.
27.
Kosch
,
T.
,
Funk
,
M.
,
Schmidt
,
A.
, and
Chuang
,
L. L.
,
2018
, “
Identifying Cognitive Assistance With Mobile Electroencephalography: A Case Study With In-Situ Projections for Manual Assembly
,”
Proc. ACM Hum.-Comput. Interact.
,
2
(
EICS
), pp.
1
20
.
28.
Barrella
,
E. M.
,
Cowan
,
C.
,
Girdner
,
J.
,
Watson
,
M. K.
, and
Anderson
,
R.
,
2019
, “
Measuring Connections: Engineering Students’ Cognitive Activities and Performance on Complex Tasks
,”
Proceedings—Frontiers in Education (FIE) Conference
,
Covington, GA
,
Oct. 16–19
,
IEEE
, pp.
1
8
.
29.
Chandler
,
P.
, and
Sweller
,
J.
,
1996
, “
Cognitive Load While Learning to Use a Computer Program
,”
Appl. Cogn. Psychol.
,
10
(
2
), pp.
151
170
.
30.
Martin-Michiellot
,
S.
, and
Mendelsohn
,
P.
,
2000
, “
Cognitive Load While Learning With a Graphical Computer Interface
,”
J. Comput. Assist. Learn.
,
16
(
4
), pp.
284
293
.
31.
Mathur
,
J.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2021
, “
Analysis of the Knowledge Gain and Cognitive Load Experienced Due to the Computer-Aided Instruction of Additive Manufacturing Processes
,”
International Design Engineering Technical Conference & Computers and Information in Engineering Conference—IDETC/CIE
,
Virtual, Online
,
Aug. 17–19
, pp.
1
12
.
32.
Maier
,
A. M.
,
Baltsen
,
N.
,
Christoffersen
,
H.
, and
Störrle
,
H.
,
2014
, “
Towards Diagram Understanding: A Pilot-Study Measuring Cognitive Workload Through Eye-Tracking
,”
Proceedings of International Conference on Human Behaviour in Design
,
Ascona, Switzerland
,
Oct. 14–17
, pp.
1
6
.
33.
Nguyen
,
T. A.
, and
Zeng
,
Y.
,
2014
, “
A Physiological Study of Relationship Between Designer’s Mental Effort and Mental Stress During Conceptual Design
,”
Comput. Aided Des.
,
54
, pp.
3
18
.
34.
Young
,
B. G.
,
Wodehouse
,
A.
, and
Sheridan
,
M.
,
2015
, “
Physical Interaction Mappings : Utilizing Cognitive Load Theory in Order to Enhance Physical Product Interaction
,”
Proceedings of the 20th International Conference on Engineering Design (ICED 15) Vol 3: Organisation and Management
,
Milan, Italy
,
July 27–30
, pp.
1
10
.
35.
Nguyen
,
T. A.
, and
Zeng
,
Y.
,
2016
, “
Effects of Stress and Effort on Self-Rated Reports in Experimental Study of Design Activities
,”
J. Intell. Manuf.
,
28
(
7
), pp.
1609
1622
.
36.
Schultze-Kraft
,
M.
,
Dahne
,
S.
,
Gugler
,
M.
,
Curio
,
G.
, and
Blankertz
,
B.
,
2016
, “
Unsupervised Classification of Operator Workload From Brain Signals
,”
J. Neural Eng.
,
13
(
3
), pp.
1
15
.
37.
Yu
,
R.
, and
Gero
,
J.
,
2017
, “
Exploring Designers’ Cognitive Load When Viewing Different Digital Representations of Spaces: A Pilot Study
,”
Smart Innov. Syst. Technol.
,
65
, pp.
457
467
.
38.
Dan
,
A.
, and
Reiner
,
M.
,
2017
, “
EEG-Based Cognitive Load of Processing Events in 3D Virtual Worlds Is Lower Than Processing Events in 2D Displays
,”
Int. J. Psychophysiol.
,
122
, pp.
75
84
.
39.
Choi
,
M. K.
,
Lee
,
S. M.
,
Ha
,
J. S.
, and
Seong
,
P. H.
,
2018
, “
Development of an EEG-Based Workload Measurement Method in Nuclear Power Plants
,”
Ann. Nucl. Energy
,
111
, pp.
595
607
.
40.
Nguyen
,
P.
,
Nguyen
,
T. A.
, and
Zeng
,
Y.
,
2018
, “
Empirical Approaches to Quantifying Effort, Fatigue and Concentration in the Conceptual Design Process: An EEG Study
,”
Res. Eng. Des.
,
29
(
3
), pp.
393
409
.
41.
Nolte
,
H.
, and
McComb
,
C.
,
2021
, “
The Cognitive Experience of Engineering Design: An Examination of First-Year Student Stress Across Principal Activities of the Engineering Design Process
,”
Des. Sci.
,
7
(
May
).
42.
Dissaux
,
T.
, and
Jancart
,
S.
,
2022
, “
Impact of Cognitive Load Associated With Learning and Using Parametric Tools in Architectural Design
,”
XIX International Conference EGA 2022
,
Cartagena, Spain
,
June 2–4
, pp.
643
646
.
43.
Zimmerer
,
C.
,
Nelius
,
T.
, and
Matthiesen
,
S.
,
2023
, “
Using Eye Tracking to Measure Cognitive Load of Designers in Situ
,”
Des. Comput. Cogn.
, pp.
481
495
.
44.
Borgianni
,
Y.
, and
Maccioni
,
L.
,
2020
, “
Review of the Use of Neurophysiological and Biometric Measures in Experimental Design Research
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
34
(
2
), pp.
248
285
.
45.
Klimesch
,
W.
,
1999
, “
EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis
,”
Brain Res. Rev.
,
29
(
2–3
), pp.
169
195
.
46.
Basar
,
E.
,
1999
,
Brain Functions and Oscillations, Volume II: Integrative Brain Functions. Neurophysiology and Cognitive Processes
,
Springer
,
New York
.
47.
Pernet
,
C.
,
Garrido
,
M. I.
,
Gramfort
,
A.
,
Maurits
,
N.
,
Michel
,
C. M.
,
Pang
,
E.
,
Salmelin
,
R.
,
Schoffelen
,
J. M.
,
Valdes-Sosa
,
P. A.
, and
Puce
,
A.
,
2020
, “
Issues and Recommendations From the OHBM COBIDAS MEEG Committee for Reproducible EEG and MEG Research
,”
Nat. Neurosci.
,
23
(
12
), pp.
1473
1483
.
48.
Maurer
,
U.
,
Brem
,
S.
,
Liechti
,
M.
,
Maurizio
,
S.
,
Michels
,
L.
, and
Brandeis
,
D.
,
2015
, “
Frontal Midline Theta Reflects Individual Task Performance in a Working Memory Task
,”
Brain Topogr.
,
28
(
1
), pp.
127
134
.
49.
Harputlu Aksu
,
Ş
,
Çakıt
,
E.
, and
Dağdeviren
,
M.
,
2023
, “
Investigating the Relationship Between EEG Features and N-Back Task Difficulty Levels With NASA-TLX Scores Among Undergraduate Students
,”
Proceedings of 6th International Conference on Intelligent Human Systems Integration (IHSI 2023): Integrating People and Intelligent Systems
,
Venice, Italy
,
Feb. 22–24
, pp.
115
123
.
50.
Morton
,
J.
,
Zheleva
,
A.
,
Van Acker
,
B. B.
,
Durnez
,
W.
,
Vanneste
,
P.
,
Larmuseau
,
C.
,
De Bruyne
,
J.
, et al
,
2022
, “
Danger, High Voltage! Using EEG and EOG Measurements for Cognitive Overload Detection in a Simulated Industrial Context
,”
Appl. Ergon.
,
102
(
Mar.
), p.
103763
.
51.
Grimes
,
D.
,
Tan
,
D. S.
,
Hudson
,
S. E.
,
Shenoy
,
P.
, and
Rao
,
R. P. N.
,
2008
, “
Feasibility and Pragmatics of Classifying Working Memory Load With an Electroencephalograph
,”
CHI 2008 Proceedings: Cognition, Perception, and Memory
,
Florence, Italy
, pp.
835
844
.
52.
Brouwer
,
A. M.
,
Hogervorst
,
M. A.
,
Van Erp
,
J. B. F.
,
Heffelaar
,
T.
,
Zimmerman
,
P. H.
, and
Oostenveld
,
R.
,
2012
, “
Estimating Workload Using EEG Spectral Power and ERPs in the N-Back Task
,”
J. Neural Eng.
,
9
(
4
), p.
045008
.
53.
Hogervorst
,
M. A.
,
Brouwer
,
A. M.
, and
van Erp
,
J. B. F.
,
2014
, “
Combining and Comparing EEG, Peripheral Physiology and Eye-Related Measures for the Assessment of Mental Workload
,”
Front. Neurosci.
,
8
, pp.
1
14
.
54.
Cheema
,
B. S.
,
Samima
,
S.
,
Sarma
,
M.
, and
Samanta
,
D.
,
2018
, “Mental Workload Estimation From EEG Signals Using Machine Learning Algorithms,”
Engineering Psychology and Cognitive Ergonomics. EPCE 2018. Lecture Notes in Computer Science
,
D.
Harris
., ed., vol 10906,
Springer International Publishing
,
Cham
.
55.
Guan
,
K.
,
Chai
,
X.
,
Zhang
,
Z.
,
Li
,
Q.
, and
Niu
,
H.
,
2021
, “
Evaluation of Mental Workload in Working Memory Tasks With Different Information Types Based on EEG
,”
Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS
,
100191
(
37
), pp.
5682
5685
.
56.
Gundel
,
A.
, and
Wilson
,
G. F.
,
1992
, “
Topographical Changes in the Ongoing EEG Related to the Difficulty of Mental Tasks
,”
Brain Topogr.
,
5
(
1
), pp.
17
25
.
57.
Raufi
,
B.
, and
Longo
,
L.
,
2022
, “
An Evaluation of the EEG Alpha-to-Theta and Theta-to-Alpha Band Ratios as Indexes of Mental Workload
,”
Front. Neuroinform.
,
16
, pp.
1
15
.
58.
Mastropietro
,
A.
,
Pirovano
,
I.
,
Marciano
,
A.
,
Porcelli
,
S.
, and
Rizzo
,
G.
,
2023
, “
Reliability of Mental Workload Indeks Assessed by EEG With Different Electrode Configurations and Signal Pre-Processing Pipelinse
,”
Sensors
,
23
(
3
), p.
1367
.
59.
Vieira
,
S.
,
Benedek
,
M.
,
Gero
,
J.
,
Li
,
S.
, and
Cascini
,
G.
,
2022
, “
Design Spaces and EEG Frequency Band Power in Constrained and Open Design
,”
Int. J. Des. Creat. Innov.
, pp.
1
28
.
60.
Jia
,
W.
, and
Zeng
,
Y.
,
2021
, “
EEG Signals Respond Differently to Idea Generation, Idea Evolution and Evaluation in a Loosely Controlled Creativity Experiment
,”
Sci. Rep.
,
11
(
2119
), pp.
1
20
.
61.
Lukačević
,
F.
,
Becattini
,
N.
,
Perišić
,
M. M.
, and
Škec
,
S.
,
2023
, “
Differences in Engineers’ Brain Activity When CAD Modelling From Isometric and Orthographic Projections
,”
Sci. Rep.
,
13
(
1
), pp.
1
16
.
62.
Nguyen
,
P.
,
Nguyen
,
T. A.
, and
Zeng
,
Y.
,
2018
, “
Segmentation of Design Protocol Using EEG
,”
Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM
,
33
(
1
), pp.
11
23
.
63.
Li
,
S.
,
Becattini
,
N.
, and
Cascini
,
G.
,
2025
, “
Neuro-Cognitive Insights Into Engineering Design: Exploring EEG Predictive Associations With Task Performance
,”
ASME J. Mech. Des.
,
147
(
5
), p.
051401
.
64.
Hart
,
S. G.
, and
Staveland
,
L. E.
,
1988
, “Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research,”
Human Mental Workload
,
P. A.
Hancock
, and
N.
Meshkati
, eds.,
Elsevier Science
,
Amsterdam
, pp.
139
183
.
65.
Anand
,
V.
,
Sreeja
,
S. R.
, and
Samanta
,
D.
,
2019
, “An Automated Approach for Task Evaluation Using EEG Signals,” arXiv, pp.
1
19
.
66.
Cohen
,
M. X.
,
2017
, “
Where Does EEG Come From and What Does It Mean?
,”
Trends Neurosci.
,
40
(
4
), pp.
208
218
.
67.
Johnson
,
M. D.
,
Valverde
,
L. M.
, and
Thomison
,
W. D.
,
2018
, “
An Investigation and Evaluation of Computer-Aided Design Model Complexity Metrics
,”
Comput. Aided Des. Appl.
,
15
(
1
), pp.
61
75
.
68.
Hart
,
S. G.
,
2006
, “
NASA-Task Load Index (NASA-TLX); 20 Years Later
,”
Proc. Hum. Factors Ergon. Soc.
,
50
(
9
), pp.
904
908
.
69.
Delorme
,
A.
, and
Makeig
,
S.
,
2004
, “
EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis
,”
J. Neurosci. Methods
,
134
(
1
), pp.
9
21
.
70.
Stern
,
J. M.
,
Atlas of EEG Patterns
,
Wolters Kluwer, Lippincott Williams & Wilkins
,
Philadelphia, PA
.
71.
Gerloff
,
C.
,
Richard
,
J.
,
Hadley
,
J.
,
Schulman
,
A. E.
,
Honda
,
M.
, and
Hallett
,
M.
,
1998
, “
Functional Coupling and Regional Activation of Human Cortical Motor Areas During Simple, Internally Paced and Externally Paced Finger Movements
,”
Brain
,
121
(
8
), pp.
1513
1531
.
72.
Promsorn
,
P.
,
Boonyahotra
,
V.
, and
Sittiprapaporn
,
P.
,
2017
, “
Spatial Abilities Improve Brain-Computer Interface Performance Indexed by Electroencephalography
,”
14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
,
Phuket, Thailand
,
June 27–30
, pp.
34
37
.
73.
Call
,
B. J.
,
Goodridge
,
W.
,
Villanueva
,
I.
,
Wan
,
N.
, and
Jordan
,
K.
,
2016
, “
Utilizing Electroencephalography Measurements for Comparison of Task-Specific Neural Efficiencies: Spatial Intelligence Tasks
,”
J. Vis. Exp.
,
2016
(
114
), pp.
1
13
.
74.
Ornstein
,
R.
,
Johnstone
,
J.
,
Herron
,
J.
, and
Swencionis
,
C.
,
1980
, “
Differential Right Hemisphere Engagement in Visuospatial Tasks
,”
Neuropsychologia
,
18
(
1
), pp.
49
64
.
You do not currently have access to this content.