Abstract

Aiming to capture the needs of non-cooperative targets in space missions, this research proposes a modular design scheme for a space capture gripper in combination with origami theory and carries out a corresponding capture performance analysis for the proposed gripper configuration. First, the finger unit module is formed by the configuration design of the Miura crease through origami theory. A variety of gripper configurations are formed through the hinge offset technique. The mobility of the selected gripper configurations is analyzed, and a single-degree-of-freedom finger drive implementation is proposed. Second, numerical analysis is carried out to investigate and validate the kinematic characteristics through a computer-aided design model. In order to evaluate the performance of the gripper, the mapping relationship between key design parameters and performance indicators such as envelope radius and envelope space is investigated. Considering the gripper's geometric constraints and performance indexes, its optimal capturing posture is analyzed. Finally, the correctness of the theoretical analysis is verified by the prototype model, and it is shown that the origami-inspired modular gripper has the advantages of simple structure, easy control, and high versatility. The gripper can be used to capture non-cooperative targets in space missions, which provides a certain reference for the application of origami theory in engineering.

References

1.
Miraux
,
L.
,
2022
, “
Environmental Limits to the Space Sector's Growth
,”
Sci. Total Environ.
,
806
, p.
150862
.
2.
Giudici
,
L.
,
Colombo
,
C.
,
Horstmann
,
A.
,
Letizia
,
F.
, and
Lemmens
,
S.
,
2024
, “
Density-Based Evolutionary Model of the Space Debris Environment in Low-Earth Orbit
,”
Acta Astronaut.
,
219
, pp.
115
127
.
3.
St-Onge
,
D.
,
Sharf
,
I.
,
Sagnières
,
L.
, and
Gosselin
,
C.
,
2018
, “
A Deployable Mechanism Concept for the Collection of Small-to-Medium-Size Space Debris
,”
Adv. Space Res.
,
61
(
5
), pp.
1286
1297
.
4.
Wang
,
G.
,
Zhang
,
Q.
,
Hu
,
X.
,
Wang
,
K.
,
Yang
,
F.
, and
Yue
,
H.
,
2024
, “
Capture Dynamics and Driving Method of Origami Capture Mechanism in Orbit
,”
Thin Walled Struct.
,
201
, p.
112019
.
5.
Zhao
,
P.
,
Liu
,
J.
, and
Wu
,
C.
,
2020
, “
Survey on Research and Development of on-Orbit Active Debris Removal Methods
,”
Sci. China Technol. Sci.
,
63
(
11
), pp.
2188
2210
.
6.
Svotina
,
V. V.
, and
Cherkasova
,
МV
,
2023
, “
Space Debris Removal—Review of Technologies and Techniques. Flexible or Virtual Connection Between Space Debris and Service Spacecraft
,”
Acta Astronaut.
,
204
, pp.
840
853
.
7.
Nakasuka
,
S.
,
Funane
,
T.
,
Nakamura
,
Y.
,
Nojiri
,
Y.
,
Sahara
,
H.
,
Sasaki
,
F.
, and
Kaya
,
N.
,
2006
, “
Sounding Rocket Flight Experiment for Demonstrating “Furoshiki Satellite” for Large Phased Array Antenna
,”
Acta Astronaut.
,
59
(
1–5
), pp.
200
205
.
8.
Medina
,
A.
,
Cercós
,
L.
,
Stefanescu
,
R. M.
,
Benvenuto
,
R.
,
Pesce
,
V.
,
Marcon
,
M.
,
Lavagna
,
M.
,
González
,
I.
,
Rodríguez López
,
N.
, and
Wormnes
,
K.
,
2017
, “
Validation Results of Satellite Mock-up Capturing Experiment Using Nets
,”
Acta Astronaut.
,
134
, pp.
314
332
.
9.
Forshaw
,
J. L.
,
Aglietti
,
G. S.
,
Navarathinam
,
N.
,
Kadhem
,
H.
,
Salmon
,
T.
,
Pisseloup
,
A.
,
Joffre
,
E.
, et al
,
2016
, “
RemoveDEBRIS: An In-Orbit Active Debris Removal Demonstration Mission
,”
Acta Astronaut.
,
127
, pp.
448
463
.
10.
Aglietti
,
G. S.
,
Taylor
,
B.
,
Fellowes
,
S.
,
Salmon
,
T.
,
Retat
,
I.
,
Hall
,
A.
,
Chabot
,
T.
, et al
,
2020
, “
The Active Space Debris Removal Mission RemoveDebris. Part 2: In Orbit Operations
,”
Acta Astronaut.
,
168
, pp.
310
322
.
11.
Araromi
,
O. A.
,
Gavrilovich
,
I.
,
Shintake
,
J.
,
Rosset
,
S.
,
Richard
,
M.
,
Gass
,
V.
, and
Shea
,
H. R.
,
2015
, “
Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper
,”
IEEE/ASME Trans. Mechatron.
,
20
(
1
), pp.
438
446
.
12.
Wang
,
B.
, and
Yu
,
T.
,
2023
, “
Numerical Investigation of Novel 3D-SPA for Gripping Analysis in Multi-Environment
,”
Int. J. Mech. Sci.
,
240
, p.
107916
.
13.
Mouaze
,
N.
, and
Birglen
,
L.
,
2022
, “
Bistable Compliant Underactuated Gripper for the Gentle Grasp of Soft Objects
,”
Mech. Mach. Theory
,
170
, p.
104676
.
14.
Wang
,
R.
,
Huang
,
H.
, and
Li
,
X.
,
2023
, “
Self-Adaptive Grasping Analysis of a Simulated “Soft” Mechanical Grasper Capable of Self-Locking
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061006
.
15.
Wang
,
R. G.
,
Huang
,
H. B.
,
Xu
,
R. H.
,
Li
,
K. G.
, and
Dai
,
J. S.
,
2021
, “
Design of a Novel Simulated “Soft” Mechanical Grasper
,”
Mech. Mach. Theory
,
158
, p.
104240
.
16.
Dudziak
,
R.
,
Tuttle
,
S.
, and
Barraclough
,
S.
,
2015
, “
Harpoon Technology Development for the Active Removal of Space Debris
,”
Adv. Space Res.
,
56
(
3
), pp.
509
527
.
17.
Campbell
,
J. C.
,
Hughes
,
K.
,
Vignjevic
,
R.
,
Djordjevic
,
N.
,
Taylor
,
N.
, and
Jardine
,
A.
,
2022
, “
Development of Modelling Design Tool for Harpoon for Active Space Debris Removal
,”
Int. J. Impact Eng.
,
166
, p.
104236
.
18.
Tamaki
,
Y.
, and
Tanaka
,
H.
,
2022
, “
Experimental Study on Penetration Characteristics of Metal Harpoons With Various Tip Shapes for Capturing Space Debris
,”
Adv. Space Res.
,
70
(
2
), pp.
315
323
.
19.
Zhao
,
J.
,
Zhao
,
Z.
,
Yang
,
X.
,
Zhao
,
L.
,
Yang
,
G.
, and
Liu
,
H.
,
2023
, “
Inverse Kinematics and Workspace Analysis of a Novel SSRMS-Type Reconfigurable Space Manipulator With Two Lockable Passive Telescopic Links
,”
Mech. Mach. Theory
,
180
, p.
105152
.
20.
Zhang
,
Y.
,
Kang
,
X.
, and
Li
,
B.
,
2024
, “
A Family of Folding Single-Loop Metamorphic Mechanisms for Aerospace Manipulators: Synthesis, Network, and Analysis
,”
Mech. Mach. Theory
,
201
, p.
105728
.
21.
He
,
J.
,
Zheng
,
H.
,
Gao
,
F.
, and
Zhang
,
H.
,
2019
, “
Dynamics and Control of a 7-DOF Hybrid Manipulator for Capturing a Non-Cooperative Target in Space
,”
Mech. Mach. Theory
,
140
, pp.
83
103
.
22.
Mayorova
,
V. I.
,
Shcheglov
,
G. A.
, and
Stognii
,
M. V.
,
2021
, “
Analysis of the Space Debris Objects Nozzle Capture Dynamic Processed by a Telescopic Robotic Arm
,”
Acta Astronaut.
,
187
, pp.
259
270
.
23.
Wang
,
G.
,
Wang
,
J.
,
Yao
,
Y.
,
Yang
,
F.
, and
Yue
,
H.
,
2023
, “
Research on Programmable Spatial Capture Mechanism and Its Motion Characteristics Based on Origami Principle
,”
Mech. Mach. Theory
,
181
, p.
105179
.
24.
Wang
,
R.
,
Li
,
X.
, and
Huang
,
H.
,
2023
, “
Design of Thick Panels Origami-Inspired Flexible Grasper With Anti-Interference Ability
,”
Mech. Mach. Theory
,
189
, p.
105431
.
25.
Teoh
,
Z. E.
,
Phillips
,
B. T.
,
Becker
,
K. P.
,
Whittredge
,
G.
,
Weaver
,
J. C.
,
Hoberman
,
C.
,
Gruber
,
D. F.
, and
Wood
,
R. J.
,
2018
, “
Rotary-Actuated Folding Polyhedrons for Midwater Investigation of Delicate Marine Organisms
,”
Sci. Robot.
,
3
(
20
), p.
eaat5276
.
26.
Li
,
S. G.
,
Stampfli
,
J. J.
,
Xu
,
H. J.
,
Malkin
,
E.
,
Diaz
,
E. V.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2019
, “
A Vacuum-Driven Origami “Magic-Ball” Soft Gripper
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
,
IEEE
, pp.
7401
7408
.
27.
Yang
,
M.
,
2018
, “
Thick-Panel Origami Inspired Forceps for Minimally Invasive Surgery
,”
Chin. J. Mech. Eng.
,
54
(
17
), pp.
36
45
.
28.
You
,
Z.
,
2014
, “
Folding Structures Out of Flat Materials
,”
Science
,
345
(
6197
), pp.
623
624
.
29.
Ma
,
J.
,
Song
,
J.
, and
Chen
,
Y.
,
2018
, “
An Origami-Inspired Structure With Graded Stiffness
,”
Int. J. Mech. Sci.
,
136
, pp.
134
142
.
30.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
31.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
32.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
33.
Miura
,
K.
, and
Furuya
,
H.
,
1988
, “
Adaptive Structure Concept for Future Space Applications
,”
AIAA J.
,
26
(
8
), pp.
995
1002
.
34.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), pp.
094009
.
35.
Chen
,
Y.
,
Lv
,
W.
,
Peng
,
R.
, and
Wei
,
G.
,
2019
, “
Mobile Assemblies of Four-Spherical-4R-Integrated Linkages and the Associated Four-Crease-Integrated Rigid Origami Patterns
,”
Mech. Mach. Theory
,
142
, pp.
103613
.
36.
Zhang
,
Y.
,
Li
,
M.
,
Chen
,
Y.
,
Peng
,
R.
, and
Zhang
,
X.
,
2023
, “
Thick-Panel Origami-Based Parabolic Cylindrical Antenna
,”
Mech. Mach. Theory
,
182
, pp.
105233
.
37.
Chen
,
Y.
, and
You
,
Z.
,
2008
, “
An Extended Myard Linkage and Its Derived 6R Linkage
,”
ASME J. Mech. Des.
,
130
(
5
), pp.
052301
.
38.
Yao
,
S.
,
Lu
,
Y.
,
Zhu
,
X.
,
Yan
,
T.
,
Yang
,
Y.
,
Wang
,
H.
, and
Chen
,
G.
,
2023
, “
On the Kinematics of General Plane-Symmetric Bricard Mechanisms
,”
Mech. Mach. Theory
,
190
, pp.
105433
.
39.
Sun
,
C.
,
Wan
,
W.
, and
Deng
,
L.
,
2019
, “
Adaptive Space Debris Capture Approach Based on Origami Principle
,”
Int. J. Adv. Rob. Syst.
,
16
(
6
), pp.
1729881419885219
.
40.
Wang
,
C.
,
Guo
,
H.
,
Liu
,
R.
,
Yang
,
H.
, and
Deng
,
Z.
,
2021
, “
A Programmable Origami-Inspired Webbed Gripper
,”
Smart Mater. Struct.
,
30
(
5
), pp.
055010
.
41.
Fan
,
Z.
,
Wang
,
R.
,
Huang
,
H.
, and
Li
,
X.
,
2024
, “
Design and Analysis of an Origami-Inspired Modular Thick-Panel Deployable Structure
,”
Int. J. Mech. Sci.
,
282
, pp.
109579
.
42.
Yang
,
J.
,
Zhang
,
X.
,
Chen
,
Y.
, and
You
,
Z.
,
2022
, “
Folding Arrays of Uniform-Thickness Panels to Compact Bundles With a Single Degree of Freedom
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
478
(
2261
), pp.
20220043
.
You do not currently have access to this content.