Abstract

This study presents a novel optimization-based synthesis framework for linkage mechanisms with a single degree-of-freedom. Current topology optimization-based mechanism synthesis methods often result in infeasible solutions due to the highly nonlinear and multi-modal nature of the objective function. To address this, we propose a new optimization framework that uses binary links as design components, defining candidate mechanisms through node adjacency matrices that specify topologies, end effector positions, and ground-anchoring nodes. These candidates are screened for invalid motions and topologies by considering reducibility and isomorphism. Our approach conducts global-local optimization exclusively on candidates with valid degrees-of-freedom, ensuring a higher chance of identifying feasible solutions by avoiding the exploration of invalid mechanisms. The first optimization step involves a global search that simultaneously optimizes the topology and shape of a linkage to best follow the target path. The second step fine-tunes the linkage shape by optimizing the nodal coordinates. The effectiveness of the proposed method is validated through case studies, demonstrating its capability to solve mechanisms with up to seven-node linkages.

References

1.
Norton
,
R. L.
,
2011
,
Kinematics and Dynamics of Machinery
,
McGraw-Hill Higher Education
,
New York
.
2.
Uicker
,
J.
,
Pennock
,
G.
, and
Shigley
,
J.
,
2010
,
Theory of Machines and Mechanisms
, 4th ed.,
Oxford University Press
,
New York
.
3.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Planar Articulated Mechanism Design by Graph Theoretical Enumeration
,”
Struct. Multidiscipl. Optim.
,
27
(
4
), pp.
295
299
.
4.
Kawamoto
,
A.
,
2005
, “
Path-Generation of Articulated Mechanisms by Shape and Topology Variations in Non-Linear Truss Representation
,”
Int. J. Numer. Methods Eng.
,
64
(
12
), pp.
1557
1574
.
5.
Sedlaczek
,
K.
, and
Eberhard
,
P.
,
2009
, “
Topology Optimization of Large Motion Rigid Body Mechanisms With Nonlinear Kinematics
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021011
.
6.
Cao
,
L.
,
Dolovich
,
A. T.
,
Schwab
,
A. L.
,
Herder
,
J. L.
, and
Zhang
,
W.
,
2015
, “
Toward a Unified Design Approach for Both Compliant Mechanisms and Rigid-Body Mechanisms: Module Optimization
,”
ASME J. Mech. Des.
,
137
(
12
), p.
122301
.
7.
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2014
, “
Topology Optimization of Planar Linkage Mechanisms
,”
Int. J. Numer. Methods Eng.
,
98
(
4
), pp.
265
286
.
8.
Kang
,
S. W.
, and
Kim
,
Y. Y.
,
2018
, “
Unified Topology and Joint Types Optimization of General Planar Linkage Mechanisms
,”
Struct. Multidiscipl. Optim.
,
57
(
5
), pp.
1955
1983
.
9.
Tran
,
Q. D.
, and
Jang
,
G.-W.
,
2024
, “
Topology Optimization of Linkage Mechanisms Using Spring-Connected Link Model
,”
Struct. Multidiscipl. Optim.
,
67
(
8
), p.
147
.
10.
Kim
,
Y. Y.
,
Jang
,
G.-W.
,
Park
,
J. H.
,
Hyun
,
J. S.
, and
Nam
,
S. J.
,
2007
, “
Automatic Synthesis of a Planar Linkage Mechanism With Revolute Joints by Using Spring-Connected Rigid Block Models
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
930
940
.
11.
Kang
,
S. W.
,
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2016
, “
Topology Optimization of Planar Linkage Systems Involving General Joint Types
,”
Mech. Mach. Theory
,
104
, pp.
130
160
.
12.
Wang
,
H.
,
Yu
,
W.
, and
Chen
,
G.
,
2017
, “
An Approach of Topology Optimization of Multi-Rigid-Body Mechanism
,”
Comput.-Aided Des.
,
84
, pp.
39
55
.
13.
Pan
,
Z.
,
Liu
,
M.
,
Gao
,
X.
, and
Manocha
,
D.
,
2019
, “
Globally Optimal Joint Search of Topology and Trajectory for Planar Linkages
,”
Proceedings of the International Symposium of Robotics Research
,
Cham
:
Springer International Publishing
, pp.
1
17
.
14.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
Computational Creativity via Assisted Variational Synthesis of Mechanisms Using Deep Generative Models
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121402
.
15.
Heyrani Nobari
,
A.
,
Srivastava
,
A.
,
Gutfreund
,
D.
, and
Ahmed
,
F.
,
2022
, “
Links: A Dataset of a Hundred Million Planar Linkage Mechanisms for Data-Driven Kinematic Design
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
86229
,
American Society of Mechanical Engineers
, p.
V03AT03A013
.
16.
Nurizada
,
A.
,
Dhaipule
,
R.
,
Lyu
,
Z.
, and
Purwar
,
A.
,
2025
, “
A Dataset of 3M Single-DOF Planar 4-, 6-, and 8-Bar Linkage Mechanisms With Open and Closed Coupler Curves for Machine Learning-Driven Path Synthesis
,”
ASME J. Mech. Des.
,
147
(
4
), p.
041702
.
17.
Yim
,
N. H.
,
Lee
,
J.
,
Kim
,
J.
, and
Kim
,
Y. Y.
,
2021
, “
Big Data Approach for the Simultaneous Determination of the Topology and End-Effector Location of a Planar Linkage Mechanism
,”
Mech. Mach. Theory
,
163
, p.
104375
.
18.
Nobari
,
A. H.
,
Srivastava
,
A.
,
Gutfreund
,
D.
,
Xu
,
K.
, and
Ahmed
,
F.
,
2024
, “LInK: Learning Joint Representations of Design and Performance Spaces through Contrastive Learning for Mechanism Synthesis,” arXiv preprint arXiv:2405.20592.
19.
Chen
,
T.-C.
,
Sheng
,
Y.-T.
,
Liong
,
S.-T.
,
Wang
,
S.-Y.
, and
Gan
,
Y.-S.
,
2024
, “
GNN-Based Reverse Design for Mechanical Systems: Bridging Trajectory and Mechanical Design
,”
Expert Syst. Appl.
,
247
, p.
123256
.
20.
Cheng
,
Y.
,
Song
,
P.
,
Lu
,
Y.
,
Chew
,
W. J. J.
, and
Liu
,
L.
,
2022
, “
Exact 3D Path Generation via 3D cam-Linkage Mechanisms
,”
ACM Trans. Graphics (TOG)
,
41
(
6
), pp.
1
13
.
21.
Purwar
,
A.
, and
Chakraborty
,
N.
,
2023
, “
Deep Learning-Driven Design of Robot Mechanisms
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060811
.
22.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
.
23.
Schmidt
,
L. C.
,
Shetty
,
H.
, and
Chase
,
S. C.
,
2000
, “
A Graph Grammar Approach for Structure Synthesis of Mechanisms
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
371
376
.
24.
Tsai
,
L.-W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton, FL
.
25.
Müller
,
A.
, and
Shai
,
O.
,
2017
, “
Constraint Graphs for Combinatorial Mobility Determination
,”
Mech. Mach. Theory
,
108
, pp.
260
275
.
26.
Santiago-Valentín
,
E.
,
Portilla-Flores
,
E. A.
,
Mezura-Montes
,
E.
,
Vega-Alvarado
,
E.
,
Calva-Yáñez
,
M. B.
, and
Pedroza-Villalba
,
M.
,
2018
, “
A Graph-Theory-Based Method for Topological and Dimensional Representation of Planar Mechanisms as a Computational Tool for Engineering Design
,”
IEEE Access
,
7
, pp.
587
596
.
27.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, Vol.
11
,
Springer Science & Business Media
,
New York
.
28.
Hooke
,
R.
, and
Jeeves
,
T. A.
,
1961
, “‘
Direct Search’ Solution of Numerical and Statistical Problems
,”
J. ACM (JACM)
,
8
(
2
), pp.
212
229
.
29.
Collard
,
J.-F.
,
Duysinx
,
P.
, and
Fisette
,
P.
,
2023
, “
Optimal Synthesis of Planar Mechanisms via an Extensible-Link Approach
,”
Struct. Multidiscipl. Optim.
,
42
(
3
), pp.
403
415
.
30.
Erkan
,
K.
, and
Dülger
,
L. C.
,
2023
, “
Optimization With Genetic Algorithm (GA): Planar Mechanism Synthesis
,”
Sci. Iran.
,
30
(
5
).
31.
Lyu
,
Z.
,
Purwar
,
A.
, and
Liao
,
W.
,
2024
, “
A Unified Real-Time Motion Generation Algorithm for Approximate Position Analysis of Planar N-Bar Mechanisms
,”
ASME J. Mech. Des.
,
146
(
6
), p.
063302
.
You do not currently have access to this content.