Abstract

This article presents a novel bionic wrist driven by twisted and coiled polymer (TCP) actuators, mimicking the anatomy of the human wrist, especially the carpal bones and motion-related muscles. First, equivalent fitting models are proposed to represent the radial–ulnar and flexion–extension joint axis motion trajectories. A type synthesis method for parallel wrists (PWs) matching these models is introduced using the Atlas method, leading to the synthesis of four novel PWs. Additionally, variable-stiffness TCP actuators are integrated on both sides of the PW, resulting in a bionic wrist that combines artificial muscles and joints. A general kinematic model of the TCP-driven PW is established based on the kinematic form of linear actuator equivalent joints, followed by workspace, singularity, and performance analyses. Moreover, a stiffness model for the PW is developed by fitting the TCP displacement–stiffness data. Using this model, the variable stiffness characteristics under unilateral and compound PW driving conditions are analyzed. Finally, prototype testing is conducted to validate the PW's trajectory and stiffness. This study serves as a reference for applying TCP-like linear smart actuators in parallel mechanisms.

References

1.
Montagnani
,
F.
,
Controzzi
,
M.
, and
Cipriani
,
C.
,
2015
, “
Is It Finger or Wrist Dexterity That Is Missing in Current Hand Prostheses?
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
4
), pp.
600
609
.
2.
Bazman
,
M.
,
Yilmaz
,
N.
, and
Tumerdem
,
U.
,
2022
, “
An Articulated Robotic Forceps Design With a Parallel Wrist-Gripper Mechanism and Parasitic Motion Compensation
,”
ASME J. Mech. Des.
,
144
(
6
), p.
063303
.
3.
Bok Hong
,
M.
,
Yoon
,
D.
,
Park
,
J.
, and
Kim
,
K.
,
2024
, “
KULEX-Wrist: Design and Analysis of Linkage-Driven Exoskeleton for Wrist Assistance
,”
ASME J. Mech. Des.
,
146
(
8
), p.
083303
.
4.
Ghaedrahmati
,
R.
, and
Gosselin
,
C.
,
2022
, “
Kinematic Analysis of a New 2-DOF Parallel Wrist With a Large Singularity-Free Rotational Workspace
,”
Mech. Mach. Theory
,
175
, p.
104942
.
5.
Lessanibahri
,
S.
,
Cardou
,
P.
, and
Caro
,
S.
,
2020
, “
A Cable-Driven Parallel Robot With an Embedded Tilt-Roll Wrist
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021107
.
6.
Rodriguez-Guerra
,
D.
,
Sorrosal
,
G.
,
Cabanes
,
I.
,
Mancisidor
,
A.
, and
Calleja
,
C.
,
2023
, “
Singularity Parametrization With a Novel Kinematic Decoupled Model for Non-Spherical Wrist Robots
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
051003
.
7.
Liu
,
S.
,
Mei
,
J.
,
Wang
,
P.
,
Guo
,
F.
,
Li
,
J.
,
Wang
,
S.
, and
Wang
,
R.
,
2024
, “
Type Synthesis of a 3DOF Wrist Applying the Coupled-Input Cable-Driven Parallel Robot
,”
ASME J. Mech. Rob.
,
16
(
12
), p.
124502
.
8.
Kim
,
Y. J.
,
Kim
,
J. I.
, and
Jang
,
W.
,
2018
, “
Quaternion Joint: Dexterous 3-DOF Joint Representing Quaternion Motion for High-Speed Safe Interaction
,”
Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Madrid, Spain, Oct. 1–5, pp.
935
942
.
9.
Bai
,
S.
,
Li
,
X.
, and
Angeles
,
J.
,
2019
, “
A Review of Spherical Motion Generation Using Either Spherical Parallel Manipulators or Spherical Motors
,”
Mech. Mach. Theory
,
140
, pp.
377
388
.
10.
Bajaj
,
N. M.
,
Spiers
,
A. J.
, and
Dollar
,
A. M.
,
2019
, “
State of the Art in Artificial Wrists: A Review of Prosthetic and Robotic Wrist Design
,”
IEEE Trans. Robot.
,
35
(
1
), pp.
261
277
.
11.
Damerla
,
R.
, and
Awtar
,
S.
,
2021
, “
Constraint-Based Analysis of Parallel Kinematic Articulated Wrist Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
035001
.
12.
Sun
,
J.
,
Shao
,
L.
,
Fu
,
L.
,
Han
,
X.
, and
Li
,
S.
,
2020
, “
Kinematic Analysis and Optimal Design of a Novel Parallel Pointing Mechanism
,”
Aerosp. Sci. Technol.
,
104
, p.
105931
.
13.
Bridgwater
,
L. B.
,
Ihrke
,
C. A.
,
Diftler
,
M. A.
,
Abdallah
,
M. E.
,
Radford
,
N. A.
,
Rogers
,
J. M.
,
Yayathi
,
S.
,
Askew
,
R. S.
, and
Linn
,
D. M.
,
2012
, “
The Robonaut 2 Hand—Designed to Do Work With Tools
,”
Proceedings of 2012 IEEE International Conference on Robotics and Automation
, Saint Paul, MN, May 14–18, pp.
3425
3430
.
14.
Saglia
,
J. A.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2008
, “
Geometry and Kinematic Analysis of a Redundantly Actuated Parallel Mechanism That Eliminates Singularities and Improves Dexterity
,”
ASME J. Mech. Des.
,
130
(
12
), p.
124501
.
15.
Cammarata
,
A.
,
2015
, “
Optimized Design of a Large-Workspace 2-DOF Parallel Robot for Solar Tracking Systems
,”
Mech. Mach. Theory
,
83
, pp.
175
186
.
16.
Hernandez
,
S.
,
Bai
,
S.
, and
Angeles
,
J.
,
2006
, “
The Design of a Chain of Spherical Stephenson Mechanisms for a Gearless Robotic Pitch-Roll Wrist
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
422
429
.
17.
Sofka
,
J.
,
Skormin
,
V.
,
Nikulin
,
V.
, and
Nicholson
,
D. J.
,
2006
, “
Omni-Wrist III—A New Generation of Pointing Devices. Part I. Laser Beam Steering Devices—Mathematical Modeling
,”
IEEE Trans. Aerosp. Electron. Syst.
,
42
(
2
), pp.
718
725
.
18.
Qi
,
Y.
, and
Song
,
Y.
,
2018
, “
Coupled Kinematic and Dynamic Analysis of Parallel Mechanism Flying in Space
,”
Mech. Mach. Theory
,
124
, pp.
104
117
.
19.
Wu
,
K.
,
Yu
,
J. J.
,
Zong
,
G. H.
, and
Kong
,
X. W.
,
2014
, “
A Family of Rotational Parallel Manipulators With Equal-Diameter Spherical Pure Rotation
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011008
.
20.
Chang-Siu
,
E.
,
Snell
,
A.
,
McInroe
,
B. W.
,
Balladarez
,
X.
, and
Full
,
R. J.
,
2022
, “
How to Use the Omni-Wrist III for Dexterous Motion: An Exposition of the Forward and Inverse Kinematic Relationships
,”
Mech. Mach. Theory
,
168
, p.
104601
.
21.
Wu
,
Y. Q.
, and
Carricato
,
M.
,
2017
, “
Synthesis and Singularity Analysis of N-UU Parallel Wrists: A Symmetric Space Approach
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051013
.
22.
Kim
,
Y. J.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Robot.
,
33
(
6
), pp.
1358
1374
.
23.
Yoon
,
D.
,
Kang
,
L.
,
Manzoor
,
S.
, and
Choi
,
Y. J.
,
2021
, “
The Improved DLR Wrist: Design and Analysis of 2-Degrees-of-Freedom Rotational Mechanism Using Spatial Antiparallelogram Linkages
,”
ASME J. Mech. Des.
,
143
(
5
), p.
053303
.
24.
Sun
,
Z.
,
Li
,
Y.
,
Zi
,
B.
, and
Chen
,
B.
,
2023
, “
Design, Modeling, and Evaluation of a Hybrid Driven Knee-Ankle Orthosis With Shape Memory Alloy Actuators
,”
ASME J. Mech. Des.
,
145
(
6
), p.
063301
.
25.
Haibin
,
Y.
,
Cheng
,
K.
,
Junfeng
,
L.
, and
Guilin
,
Y.
,
2018
, “
Modeling of Grasping Force for a Soft Robotic Gripper With Variable Stiffness
,”
Mech. Mach. Theory
,
128
, pp.
254
274
.
26.
Hyeon
,
K.
,
Chung
,
C.
,
Ma
,
J.
, and
Kyung
,
K. U.
,
2023
, “
Lightweight and Flexible Prosthetic Wrist With Shape Memory Alloy (SMA)-Based Artificial Muscle and Elliptic Rolling Joint
,”
IEEE Robot. Autom. Lett.
,
8
(
11
), pp.
7849
7856
.
27.
Haines
,
C. S.
,
Lima
,
M. D.
,
Li
,
N.
,
Spinks
,
G. M.
,
Foroughi
,
J.
,
Madden
,
J. D.
,
Kim
,
S. H.
, et al
,
2014
, “
Artificial Muscles From Fishing Line and Sewing Thread
,”
Science
,
343
(
6173
), pp.
868
872
.
28.
He
,
J.
,
Li
,
J.
,
Sun
,
Z.
,
Gao
,
F.
,
Wu
,
Y.
, and
Wang
,
Z.
,
2020
, “
Kinematic Design of a Serial-Parallel Hybrid Finger Mechanism Actuated by Twisted-and-Coiled Polymer
,”
Mech. Mach. Theory
,
152
, p.
103951
.
29.
Wu
,
L. J.
,
Chauhan
,
I.
, and
Tadesse
,
Y.
,
2018
, “
A Novel Soft Actuator for the Musculoskeletal System
,”
Adv. Mater. Technol.
,
3
(
5
), p.
1700359
.
30.
Sun
,
J. F.
,
Lerner
,
E.
,
Tighe
,
B.
,
Middlemist
,
C.
, and
Zhao
,
J. G.
,
2023
, “
Embedded Shape Morphing for Morphologically Adaptive Robots
,”
Nat. Commun.
,
14
(
1
), p.
6023
.
31.
Chen
,
X.
,
Graham
,
J.
,
Hutchinson
,
C.
, and
Muir
,
L.
,
2013
, “
Automatic Inference and Measurement of 3D Carpal Bone Kinematics From Single View Fluoroscopic Sequences
,”
IEEE Trans. Med. Imaging
,
32
(
2
), pp.
317
328
.
32.
Robinson
,
S.
,
Straatman
,
L.
,
Lee
,
T. Y.
,
Suh
,
N.
, and
Lalone
,
E.
,
2021
, “
Evaluation of Four-Dimensional Computed Tomography as a Technique for Quantifying Carpal Motion
,”
ASME J. Biomech. Eng.
,
143
(
6
), p.
061011
.
33.
Foumani
,
M.
,
Strackee
,
S. D.
,
Jonges
,
R.
,
Blankevoort
,
L.
,
Zwinderman
,
A. H.
,
Carelsen
,
B.
, and
Streekstra
,
G. J.
,
2009
, “
In-Vivo Three-Dimensional Carpal Bone Kinematics During Flexion–Extension and Radio–Ulnar Deviation of the Wrist: Dynamic Motion Versus Step-Wise Static Wrist Positions
,”
J. Biomech.
,
42
(
16
), pp.
2664
2671
.
34.
Yin
,
Y.
,
Wilson
,
A. J.
, and
Gilula
,
L. A.
,
1995
, “
Three-Compartment Wrist Arthrography: Direct Comparison of Digital Subtraction With Nonsubtraction Images
,”
Radiology
,
197
(
1
), pp.
287
290
.
35.
Youm
,
Y.
, and
Flatt
,
A. E.
,
1984
, “
Design of a Total Wrist Prosthesis
,”
Ann. Biomed. Eng.
,
12
(
3
), pp.
247
262
.
36.
Yu
,
J.
,
Li
,
S.
,
Pei
,
X.
,
Bi
,
S.
, and
Zong
,
G.
,
2011
, “
A Unified Approach to Type Synthesis of Both Rigid and Flexure Parallel Mechanisms
,”
Sci. China Technol. Sci.
,
54
(
5
), pp.
1206
1219
.
37.
Meng
,
Q.
,
Xie
,
F.
,
Tang
,
R.
, and
Liu
,
X.-J.
,
2022
, “
Novel Closed-Loop Deployable Mechanisms and Integrated Support Trusses for Planar Antennas of Synthetic Aperture Radar
,”
Aerosp. Sci. Technol.
,
129
, p.
107819
.
38.
Zhang
,
Y.
,
Gao
,
C. Q.
,
Xu
,
P.
, and
Li
,
B.
,
2023
, “
Type Synthesis of Deployable and Symmetrical Single-Loop Mechanisms for Constructing Aerospace Platforms
,”
Mech. Mach. Theory
,
181
, p.
105212
.
39.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
40.
Gaozhang
,
W.
,
Li
,
Y.
,
Shi
,
J. L.
,
Wang
,
Y. X.
,
Stilli
,
A.
, and
Wurdemann
,
H.
,
2024
, “
A Novel Stiffness-Controllable Joint Using Antagonistic Actuation Principles
,”
Mech. Mach. Theory
,
196
, p.
105614
.
41.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2016
, “
A Novel 4-DOF Origami Grasper With an SMA-Actuation System for Minimally Invasive Surgery
,”
IEEE Trans. Robot.
,
32
(
3
), pp.
484
498
.
42.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Zhou
,
C.
,
2015
, “
Design and Kinematic Analysis of Redundantly Actuated Parallel Mechanisms for Ankle Rehabilitation
,”
Robotica
,
33
(
2
), pp.
366
384
.
43.
van de Giessen
,
M.
,
Foumani
,
M.
,
Vos
,
F. M.
,
Strackee
,
S. D.
,
Maas
,
M.
,
Van Vliet
,
L. J.
,
Grimbergen
,
C. A.
, and
Streekstra
,
G. J.
,
2012
, “
A 4D Statistical Model of Wrist Bone Motion Patterns
,”
IEEE Trans. Med. Imaging
,
31
(
3
), pp.
613
625
.
44.
Wang
,
L.
,
Fang
,
Y. F.
, and
Zhang
,
D.
,
2023
, “
Design of 4-DOF Hybrid Parallel Robots With an Integrated Three-Fingered Robot End Effector
,”
Mech. Mach. Theory
,
189
, p.
105443
.
45.
Wang
,
C. Z.
,
Fang
,
Y. F.
, and
Guo
,
S.
,
2016
, “
Design and Analysis of 3R2 T and 3R3 T Parallel Mechanisms With High Rotational Capability
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011004
.
46.
Man
,
W.
,
Xiaojun
,
Z.
,
Minglu
,
M.
,
Manhong
,
L.
,
Chengwei
,
Z.
, and
Xin
,
Z.
,
2023
, “
Effect of Fiber Annealing Temperature on Twisted and Coiled UHMWPE Actuator Performance
,”
Sens. Actuator A-Phys.
,
364
, p.
114802
.
47.
Yip
,
M. C.
, and
Niemeyer
,
G.
,
2017
, “
On the Control and Properties of Supercoiled Polymer Artificial Muscles
,”
IEEE Trans. Robot.
,
33
(
3
), pp.
689
699
.
48.
Luong
,
T.
,
Seo
,
S.
,
Hudoklin
,
J.
,
Koo
,
J. C.
,
Choi
,
H. R.
, and
Moon
,
H.
,
2022
, “
Variable Stiffness Robotic Hand Driven by Twisted-Coiled Polymer Actuators
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
3178
3185
.
49.
Bi
,
L. Z.
,
Feleke
,
A. G.
, and
Guan
,
C. T.
,
2019
, “
A Review on EMG-Based Motor Intention Prediction of Continuous Human Upper Limb Motion for Human-Robot Collaboration
,”
Biomed. Signal Process. Control
,
51
, pp.
113
127
.
50.
Gao
,
Z.
,
Zhang
,
Y.
,
Guo
,
J.
,
Li
,
H.
,
Chen
,
B.
, and
Wang
,
J.
,
2024
, “
A Numerical Model of Heating and Cooling Cycles to Study the Driven Response for Twisted and Coiled Polymer Actuator
,”
Acta Mech. Solida Sin.
,
37
(
6
), pp.
837
843
.
You do not currently have access to this content.