Abstract

Cable-driven mechanisms, particularly in closed-loop configurations, have demonstrated significant advancements in flexible drive systems. However, the cable tension changes caused by the closed-loop configuration cannot be effectively compensated. Relevant concerns, such as inadequate responsiveness or compromised control accuracy, consequently emerge. This study presents a method for synthesizing a family of isosceles trapezoid mirror symmetry modules, ensuring stability in cable tension. The geometric properties of an isosceles trapezoid form the fundamental principle for type synthesis. Combined with more geometric configuration, the closed-loop cable-driven mechanisms are constructed with stable structural constraints. Through mechanical theoretical analysis, the geometric and kinematic properties are thoroughly investigated and precisely formulated, thereby revealing the inherent singularity and bifurcation behaviors. Furthermore, several prototypes of the proposed modules have been fabricated to validate their kinematic properties. It demonstrates that the structural constraint of the cable has no influence on its tension. In addition, the proposed method can be extended to the design and construction of cable-driven manipulators, which hold potential applications in fields such as robotics and aerospace exploration.

References

1.
Li
,
H.
,
Liu
,
W.
,
Wang
,
K.
,
Kawashima
,
K.
, and
Magid
,
E.
,
2018
, “
A Cable-Pulley Transmission Mechanism for Surgical Robot With Backdrivable Capability
,”
Rob. Comput. Integr. Manuf.
,
49
, pp.
328
334
.
2.
Jung
,
Y.
, and
Bae
,
J.
,
2020
, “
Torque Control of a Series Elastic Tendon-Sheath Actuation Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
25
(
6
), pp.
2915
2926
.
3.
Yang
,
K.
,
Chen
,
C.
,
Ding
,
Y.
,
Wu
,
K.
,
Zhang
,
G.
, and
Yang
,
G.
,
2023
, “
Stiffness Modeling and Distribution of a Modular Cable-Driven Human-Like Robotic Arm
,”
Mech. Mach. Theory.
,
180
, p.
105150
.
4.
Moses
,
M. S.
,
Murphy
,
R. J.
,
Kutzer
,
M. D.
, and
Armand
,
M.
,
2015
, “
Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
20
(
6
), pp.
2876
2889
.
5.
Kim
,
C. Y.
,
Lee
,
M. C.
,
Wicker
,
R. B.
, and
Yoon
,
S.-M.
,
2014
, “
Dynamic Modeling of Coupled Tendon-Driven System for Surgical Robot Instrument
,”
Int. J. Precis. Eng. Manuf.
,
15
(
10
), pp.
2077
2084
.
6.
Caverly
,
R. J.
, and
Forbes
,
J. R.
,
2017
, “
Flexible Cable-Driven Parallel Manipulator Control: Maintaining Positive Cable Tensions
,”
IEEE Trans. Control Syst. Technol.
,
26
(
5
), pp.
1874
1883
.
7.
Kim
,
N.-I.
,
Thai
,
S.
, and
Lee
,
J.
,
2016
, “
Nonlinear Elasto-Plastic Analysis of Slack and Taut Cable Structures
,”
Eng. Comput.
,
32
(
4
), pp.
615
627
.
8.
Le
,
H. M.
,
Do
,
T. N.
, and
Phee
,
S. J.
,
2016
, “
A Survey on Actuators-Driven Surgical Robots
,”
Sens. Actuators A
,
247
, pp.
323
354
.
9.
Grosu
,
S.
,
De Rijcke
,
L.
,
Grosu
,
V.
,
Geeroms
,
J.
,
Vanderboght
,
B.
,
Lefeber
,
D.
, and
Rodriguez-Guerrero
,
C.
,
2018
, “
Driving Robotic Exoskeletons Using Cable-Based Transmissions: A Qualitative Analysis and Overview
,”
ASME Appl. Mech. Rev.
,
70
(
6
), p.
060801
.
10.
Huang
,
L.
,
Liu
,
B.
,
Yin
,
L.
,
Zeng
,
P.
, and
Yang
,
Y.
,
2021
, “
Design and Validation of a Novel Cable-Driven Hyper-Redundant Robot Based on Decoupled Joints
,”
J. Rob.
,
2021
(
1
), p.
5124816
.
11.
Jung
,
Y.
, and
Bae
,
J.
,
2016
, “
An Asymmetric Cable-Driven Mechanism for Force Control of Exoskeleton Systems
,”
Mechatronics
,
40
, pp.
41
50
.
12.
Lee
,
Y.-H.
, and
Lee
,
J.-J.
,
2003
, “
Modeling of the Dynamics of Tendon-Driven Robotic Mechanisms With Flexible Tendons
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1431
1447
.
13.
Fabritius
,
M.
,
Rubio-Gómez
,
G.
,
Martin
,
C.
,
Santos
,
J. C.
,
Kraus
,
W.
, and
Pott
,
A.
,
2023
, “
A Nullspace-Based Force Correction Method to Improve the Dynamic Performance of Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
181
, p.
105177
.
14.
Li
,
Z.
,
Chen
,
W.
,
Zhang
,
J.
,
Li
,
Q.
,
Wang
,
J.
,
Fang
,
Z.
, and
Yang
,
G.
,
2022
, “
A Novel Cable-Driven Antagonistic Joint Designed With Variable Stiffness Mechanisms
,”
Mech. Mach. Theory
,
171
, p.
104716
.
15.
Choi
,
K.
,
Kwon
,
J.
,
Lee
,
T.
,
Park
,
C.
,
Pyo
,
J.
,
Lee
,
C.
,
Lee
,
S.
, et al.,
2020
, “
A Hybrid Dynamic Model for the AMBIDEX Tendon-Driven Manipulator
,”
Mechatronics
,
69
, p.
102398
.
16.
Do
,
T.
,
Tjahjowidodo
,
T.
,
Lau
,
M.
, and
Phee
,
S.
,
2016
, “
Real-Time Enhancement of Tracking Performances for Cable-Conduit Mechanisms-Driven Flexible Robots
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
197
207
.
17.
In
,
H.
,
Lee
,
H.
,
Jeong
,
U.
,
Kang
,
B. B.
, and
Cho
,
K.-J.
,
2015
, “
Feasibility Study of a Slack Enabling Actuator for Actuating Tendon-Driven Soft Wearable Robot Without Pretension
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, IEEE, pp.
1229
1234
.
18.
Wang
,
Z.
,
Liu
,
G.
,
Qian
,
S.
,
Wang
,
D.
,
Wei
,
X.
, and
Yu
,
X.
,
2023
, “
Tracking Control With External Force Self-sensing Ability Based on Position/Force Estimators and Non-linear Hysteresis Compensation for a Backdrivable Cable-Pulley-Driven Surgical Robotic Manipulator
,”
Mech. Mach. Theory
,
183
, p.
105259
.
19.
Dai
,
J. S.
,
Zoppi
,
M.
, and
Kong
,
X.
,
2012
,
Advances in Reconfigurable Mechanisms and Robots I
,
Springer
,
London, UK
.
20.
Fan
,
L.
,
He
,
R.
,
Chen
,
Y.
,
Hu
,
S.
, and
Sareh
,
P.
,
2024
, “
Cyclic Reconfigurability of Deployable Ring Structures With Angulated Beams
,”
ASME J. Mech. Rob.
,
16
(
7
), p.
071005
.
21.
Chen
,
Y.
,
Feng
,
J.
, and
Sun
,
Q.
,
2018
, “
Lower-Order Symmetric Mechanism Modes and Bifurcation Behavior of Deployable Bar Structures With Cyclic Symmetry
,”
Int. J. Solids Struct.
,
139
, pp.
1
14
.
22.
Jalali
,
E.
,
Soltanizadeh
,
H.
,
Chen
,
Y.
,
Xie
,
Y. M.
, and
Sareh
,
P.
,
2022
, “
Selective Hinge Removal Strategy for Architecting Hierarchical Auxetic Metamaterials
,”
Commun. Mater.
,
3
(
1
), p.
97
.
23.
Rodriguez-Cianca
,
D.
,
Verstraten
,
T.
,
Rodriguez-Guerrero
,
C.
,
Jimenez-Fabian
,
R.
,
Naef
,
M.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2020
, “
The Two-Degree-of-Freedom Cable Pulley (2DCP) Transmission System: An Under-Actuated and Motion Decoupled Transmission for Robotic Applications
,”
Mech. Mach. Theory
,
148
, p.
103765
.
24.
Suh
,
J.-W.
, and
Kim
,
K.-Y.
,
2018
, “
Harmonious Cable Actuation Mechanism for Soft Robot Joints Using a Pair of Noncircular Pulleys
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061002
.
25.
Yuan
,
H.
,
Zhang
,
W.
,
Dai
,
Y.
, and
Xu
,
W.
,
2021
, “
Analytical and Numerical Methods for the Stiffness Modeling of Cable-Driven Serpentine Manipulators
,”
Mech. Mach. Theory
,
156
, p.
104179
.
26.
Pattanshetti
,
S.
, and
Ryu
,
S. C.
,
2018
, “
Design and Fabrication of Laser-Machined Hinge Joints on Miniature Tubes for Steerable Medical Devices
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011002
.
27.
Li
,
Z.
, and
Du
,
R.
,
2013
, “
Design and Analysis of a Bio-inspired Wire-Driven Multi-section Flexible Robot
,”
Int. J. Adv. Rob. Syst.
,
10
(
4
), p.
209
.
28.
Lau
,
K. C.
,
Leung
,
E. Y. Y.
,
Chiu
,
P. W. Y.
,
Yam
,
Y.
,
Lau
,
J. Y. W.
, and
Poon
,
C. C. Y.
,
2016
, “
A Flexible Surgical Robotic System for Removal of Early-Stage Gastrointestinal Cancers by Endoscopic Submucosal Dissection
,”
IEEE Trans. Ind. Inform.
,
12
(
6
), pp.
2365
2374
.
29.
Kim
,
J.
,
Kwon
,
S.-I.
,
Moon
,
Y.
, and
Kim
,
K.
,
2021
, “
Cable-Movable Rolling Joint to Expand Workspace Under High External Load in a Hyper-redundant Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
27
(
1
), pp.
501
512
.
30.
Yang
,
Y.
,
Li
,
J.
,
Kong
,
K.
, and
Wang
,
S.
,
2022
, “
Design of a Dexterous Robotic Surgical Instrument With a Novel Bending Mechanism
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
18
(
1
), p.
e2334
.
31.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style Robots
,”
J. Rob. Syst.
,
20
(
2
), pp.
45
63
.
32.
Martin
,
C.
,
Chapelle
,
F.
,
Lemaire
,
J.-J.
, and
Gogu
,
G.
,
2009
, “
Neurosurgical Robot Design and Interactive Motion Planning for Resection Task
,”
The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 11–15
, IEEE, pp.
4505
4510
.
33.
Ma
,
R.
,
Wu
,
D.
,
Yan
,
Z.
,
Du
,
Z.
, and
Li
,
G.
,
2010
, “
Research and Development of Micro-instrument for Laparoscopic Minimally Invasive Surgical Robotic System
,”
Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics
,
Tianjin, China
,
Dec. 14–18
, IEEE, pp.
1223
1228
.
34.
Kim
,
Y.-J.
,
Kim
,
J.-I.
, and
Jang
,
W.
,
2018
, “
Quaternion Joint: Dexterous 3-DOF Joint Representing Quaternion Motion for High-Speed Safe Interaction
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE, pp.
935
942
.
35.
Zhang
,
L.
,
Wang
,
S.
,
Li
,
J.
,
Wang
,
X.
,
He
,
C.
, and
Qu
,
J.
,
2012
, “A Novel Reconfigurable Unit for High Dexterous Surgical Instrument,”
Advances in Reconfigurable Mechanisms and Robots I
,
J.
Dai
,
M.
Zoppi
, and
X.
Kong
, eds.,
Springer
,
London
, pp.
433
442
.
36.
Suh
,
J.-W.
,
Kim
,
K.-Y.
,
Jeong
,
J.-W.
, and
Lee
,
J.-J.
,
2015
, “
Design Considerations for a Hyper-redundant Pulleyless Rolling Joint With Elastic Fixtures
,”
IEEE/ASME Trans. Mechatron.
,
20
(
6
), pp.
2841
2852
.
37.
Guardiani
,
P.
,
Ludovico
,
D.
,
Pistone
,
A.
,
Abidi
,
H.
,
Zaplana
,
I.
,
Lee
,
J.
,
Caldwell
,
D. G.
, and
Canali
,
C.
,
2022
, “
Design and Analysis of a Fully Actuated Cable-Driven Joint for Hyper-redundant Robots With Optimal Cable Routing
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021006
.
38.
Kim
,
J.
,
Han
,
H.-T.
,
Kang
,
S.
, and
Kim
,
C.
,
2019
, “
Development of Novel Bevel-Geared 5 mm Articulating Wrist for Micro-laparoscopy Instrument
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3711
3718
.
39.
Yamashita
,
H.
,
Matsumiya
,
K.
,
Masamune
,
K.
,
Liao
,
H.
,
Chiba
,
T.
, and
Dohi
,
T.
,
2006
, “
Two-DOFs Bending Forceps Manipulator of 3.5-mm Diameter for Intrauterine Fetus Surgery: Feasibility Evaluation
,”
Int. J. Comput. Assist. Radiol. Surg.
,
1
, p.
218
.
40.
Shin
,
W.-H.
, and
Kwon
,
D.-S.
,
2013
, “
Surgical Robot System for Single-Port Surgery With Novel Joint Mechanism
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
937
944
.
41.
Li
,
D.
,
Dai
,
J. S.
,
Zhang
,
Q.
, and
Jin
,
G.
,
2002
, “
Structure Synthesis of Metamorphic Mechanisms Based on the Configuration Transformations
,”
Chinese J. Mech. Eng.
,
38
(
7
), pp.
12
16
.
42.
Zong
,
G.
,
Pei
,
X.
,
Yu
,
J.
, and
Bi
,
S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1585
1595
.
43.
Liu
,
F.
,
Huang
,
H.
,
Li
,
B.
,
Hu
,
Y.
, and
Jin
,
H.
,
2020
, “
Design and Analysis of a Cable-Driven Rigid-Flexible Coupling Parallel Mechanism With Variable Stiffness
,”
Mech. Mach. Theory
,
153
, p.
104030
.
44.
Chang
,
B.
,
Yang
,
S.
,
Jin
,
G.
,
Zhang
,
Z.
, and
Zhu
,
Y.
,
2020
, “
Motion Analysis of Spatial Deployable Mechanism Driven in Straight Line
,”
J. Mech. Eng.
,
56
(
5
), pp.
192
201
.
45.
Castro
,
M. N.
,
Rasmussen
,
J.
,
Andersen
,
M. S.
, and
Bai
,
S.
,
2019
, “
A Compact 3-DOF Shoulder Mechanism Constructed With Scissors Linkages for Exoskeleton Applications
,”
Mech. Mach. Theory
,
132
, pp.
264
278
.
46.
Qin
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2014
, “
Multi-furcation in a Derivative Queer-Square Mechanism
,”
Mech. Mach. Theory
,
81
, pp.
36
53
.
47.
Li
,
J.
,
Zhang
,
G.
,
Xing
,
Y.
,
Liu
,
H.
, and
Wang
,
S.
,
2014
, “
A Class of 2-Degree-of-Freedom Planar Remote Center-of-Motion Mechanisms Based on Virtual Parallelograms
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031014
.
48.
Lee
,
C.-C.
, and
Hervé
,
J. M.
,
2014
, “
A Blend of Delassus Four-Bar Linkages
,” Computational Kinematics: Proceedings of the 6th International Workshop on Computational Kinematics (CK2013),
Springer
, pp.
165
173
.
49.
Wei
,
G.
, and
Dai
,
J. S.
,
2010
, “
Geometric and Kinematic Analysis of a Seven-Bar Three-Fixed-Pivoted Compound-Joint Mechanism
,”
Mech. Mach. Theory
,
45
(
2
), pp.
170
184
.
50.
Wang
,
Z.
,
Zhang
,
W.
, and
Ding
,
X.
,
2022
, “
A Family of RCM Mechanisms: Type Synthesis and Kinematics Analysis
,”
Int. J. Mech. Sci.
,
231
, p.
107590
.
51.
Zhu
,
L.
,
Xu
,
W.
,
Snyder
,
J.
,
Liu
,
Y.
,
Wang
,
G.
, and
Guo
,
B.
,
2012
, “
Motion-Guided Mechanical Toy Modeling
,”
ACM Trans. Graph.
,
31
(
6
), pp.
1
10
.
52.
Xue
,
Y.
,
Luo
,
G.
,
Liu
,
X.
,
Xing
,
Y.
,
Hu
,
B.
, and
Liu
,
Z.
,
2022
, “
An Analysis on the Engineering Failure of the Wire Rope Used in Surgical Instruments
,”
J. Failure Anal. Prevent.
,
22
(
2
), pp.
724
737
.
53.
Aimedee
,
F.
,
Gogu
,
G.
,
Dai
,
J. S.
,
Bouzgarrou
,
C.
, and
Bouton
,
N.
,
2016
, “
Systematization of Morphing in Reconfigurable Mechanisms
,”
Mech. Mach. Theory
,
96
, pp.
215
224
.
You do not currently have access to this content.