Abstract

Deployable load-bearing structures are useful for confined or temporary settings due to their stowability and deployability. Designing these structures involves balancing package dimensions with load-bearing capacity—defined as the maximum load under which a structure can maintain rigidity or the load above which a structure deforms. This challenge is further complicated when considering load-bearing capacities in different directions. Tendon-constrained inflatables (TCIs) offer a promising solution with its design flexibility using internal tendon configurations. TCIs feature a deployable bladder held between rigid end caps which are connected internally by inextensible tendons. A TCI maintains rigidity up to its rigid load-bearing (RLB) capacity, at which some tendons become slack. The RLB capacities can be customized in different directions depending on the tendon configuration. This article introduces a model-based design approach of a TCI's tendon configuration to trade-off RLB capacities in different directions and against package dimensions. A 3D kineto-static equilibrium model is developed to relate tendon configuration to six-dimensional RLB capacities. Visual design strategies for planar tendon configurations guide the customization of TCIs to specific package dimensions and loading scenarios. Experimental validation of the model enables TCIs, an emerging adaptive structure, to be useful for a broad range of applications.

References

1.
Schenk
,
M.
,
Viquerat
,
A. D.
,
Seffen
,
K. A.
, and
Guest
,
S. D.
,
2014
, “
Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization
,”
J. Spacecr. Rockets
,
51
(
3
), pp.
762
778
.
2.
Siéfert
,
E.
,
Reyssat
,
E.
,
Bico
,
J.
, and
Roman
,
B.
,
2020
, “
Programming Stiff Inflatable Shells From Planar Patterned Fabrics
,”
Soft Matter
,
16
(
34
), pp.
7898
7903
.
3.
Morin
,
S. A.
,
Kwok
,
S. W.
,
Lessing
,
J.
,
Ting
,
J.
,
Shepherd
,
R. F.
,
Stokes
,
A. A.
, and
Whitesides
,
G. M.
,
2014
, “
Elastomeric Tiles for the Fabrication of Inflatable Structures
,”
Adv. Funct. Mater.
,
24
(
35
), pp.
5541
5549
.
4.
Ren
,
Y.
,
Panetta
,
J.
,
Suzuki
,
S.
,
Kusupati
,
U.
,
Isvoranu
,
F.
, and
Pauly
,
M.
,
2024
, “
Computational Homogenization for Inverse Design of Surface-Based Inflatables
,”
ACM Trans. Graph. (TOG)
,
43
(
4
), pp.
1
18
.
5.
Melancon
,
D.
,
Gorissen
,
B.
,
García-Mora
,
C. J.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2021
, “
Multistable Inflatable Origami Structures at the Metre Scale
,”
Nature
,
592
(
7855
), pp.
545
550
.
6.
Sadeghi
,
S.
, and
Li
,
S.
,
2019
, “
Fluidic Origami Cellular Structure With Asymmetric Quasi-Zero Stiffness for Low-Frequency Vibration Isolation
,”
Smart Mater. Struct.
,
28
(
6
), p.
065006
.
7.
Li
,
M.
,
Zhou
,
Z.
,
Hao
,
B.
,
Yu
,
C.
,
Chen
,
Y.
, and
Ma
,
J.
,
2023
, “
Design and Deformation Analysis of an Inflatable Metallic Cylinder Based on the Kresling Origami Pattern
,”
Thin-Wall. Struct.
,
188
, p.
110859
.
8.
Young
,
A. C.
,
Davids
,
W. G.
,
Goupee
,
A. J.
, and
Clapp
,
J. D.
,
2017
, “
Computationally Efficient Finite-Element Modeling of Braided Inflatable Structural Members With Axial Reinforcing
,”
J. Eng. Mech.
,
143
(
6
), p.
04017017
.
9.
Lv
,
L.
,
Fan
,
Z.
, and
Sun
,
H.
,
2022
, “
Experimental Study on Bearing Capacity of a Tensairity Arch
,”
J. Phys.: Conf. Ser.
,
2285
(
1
), p.
012026
.
10.
Niiyama
,
R.
,
Sato
,
H.
,
Tsujimura
,
K.
,
Narumi
,
K.
,
Seong
,
Y. A.
,
Yamamura
,
R.
,
Kakehi
,
Y.
, and
Kawahara
,
Y.
,
2020
, “
Poimo: Portable and Inflatable Mobility Devices Customizable for Personal Physical Characteristics
,”
Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology
,
Virtual
,
Oct. 20–23
, pp.
912
923
.
11.
Davids
,
W. G.
,
Waugh
,
E.
, and
Vel
,
S.
,
2021
, “
Experimental and Computational Assessment of the Bending Behavior of Inflatable Drop-Stitch Fabric Panels
,”
Thin-Wall. Struct.
,
167
, p.
108178
.
12.
Kim
,
E.
,
Luntz
,
J.
,
Brei
,
D.
,
Kim
,
W.
,
Alexander
,
P.
, and
Johnson
,
N.
,
2021
, “
Tendon Constrained Inflatable Architecture: Rigid Axial Load Bearing Design Case
,”
Smart Mater. Struct.
,
30
(
5
), p.
055004
.
13.
Krishnan
,
G.
,
Bishop-Moser
,
J.
,
Kim
,
C.
, and
Kota
,
S.
,
2015
, “
Kinematics of a Generalized Class of Pneumatic Artificial Muscles
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041014
.
14.
Suñol
,
A.
, and
Vučinić
,
D.
,
2020
, “Tensairity, an Extra-Light Weight Structure for Airships,”
Advances in Visualization and Optimization Techniques for Multidisciplinary Research: Trends in Modelling and Simulations for Engineering Applications
,
Springer
,
Singapore
, pp.
159
198
.
15.
Sedal
,
A.
,
Wineman
,
A.
,
Gillespie
,
R. B.
, and
Remy
,
C. D.
,
2021
, “
Comparison and Experimental Validation of Predictive Models for Soft, Fiber-Reinforced Actuators
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
119
135
.
16.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami
,
5
, pp.
291
304
.
17.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
.
18.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.
19.
Skelton
,
R. E.
, and
De Oliveira
,
M. C.
,
2009
,
Tensegrity Systems. Vol. 1
,
Springer
,
New York
.
20.
Juan
,
S. H.
, and
Mirats Tur
,
J. M.
,
2008
, “
Tensegrity Frameworks: Static Analysis Review
,”
Mech. Mach. Theory
,
43
(
7
), pp.
859
881
.
21.
Livesley
,
R. K.
,
1975
,
Matrix Methods of Structural Analysis
,
Pergamon Press
,
Oxford
.
You do not currently have access to this content.