Abstract

Compliant mechanisms, such as compliant spherical parallel joints, play a vital role in engineering applications, often relying on single-translation constraint wire beams. However, these wire beams have inherent shortcomings, such as manufacturing challenges and low axial stiffness. Addressing these issues is imperative and first leads to the nonlinear design of the General Single-Translation Constraint (GSTC) leaf beam in this paper, which offers versatility in creating diverse single-translation constraint leaf beam configurations through geometry parameter manipulation. Leveraging the GSTC leaf beam, we then designed a versatile compliant-mechanism-based general spherical joint (spherical parallel mechanism) by introducing four key parameters. The spatial kinetostatic models of the GSTC leaf beam and the general spherical joint were both formulated using a nonlinear spatial beam constraint model. Four representative specific configurations derived from the general spherical joint were further selected for finite element analysis (FEA) verification and performance comparative analysis with a focus on the center drift. Finally, an experimental hardware was set up to test a fabricated prototype of the L-shaped beam-based spherical joint for the load-dependent effects and the nonlinear center drifts. The experimental results confirm the high accuracy of the proposed nonlinear spatial models, which can facilitate model-based, rapid multi-objective optimization in future studies.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
2.
Liu
,
P.
, and
Yan
,
P. J. M. S.
,
2017
, “
A Modified Pseudo-Rigid-Body Modeling Approach for Compliant Mechanisms With Fixed-Guided Beam Flexures
,”
Mech. Sci.
,
8
(
2
), pp.
359
368
.
3.
Soemers
,
H. M.
,
2010
,
Design Principles for Precision Mechanisms
,
University of Twente
,
Enschede
.
4.
Dan
,
W.
, and
Rui
,
F.
,
2016
, “
Design and Nonlinear Analysis of a 6-DOF Compliant Parallel Manipulator With Spatial Beam Flexure Hinges
,”
Precis. Eng.
,
45
, pp.
365
373
.
5.
Hao
,
G.
, and
Kong
,
X. J. M. S.
,
2016
, “
A Structure Design Method for Compliant Parallel Manipulators With Actuation Isolation
,”
Mech. Sci.
,
7
(
2
), pp.
247
253
.
6.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
New York
.
7.
Hao
,
G.
,
He
,
X.
,
Zhu
,
J.
, and
Li
,
H.
,
2024
, “
Design and Analysis of Leaf Beam Single-Translation Constraint Compliant Modules and the Resulting Spherical Joints
,”
ASME J. Mech. Des.
,
146
(
8
), p.
083301
.
8.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2006
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
9.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
10.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T. W.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
126
131
.
11.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
12.
Su
,
H.-J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
13.
Yu
,
Y.-Q.
,
Feng
,
Z.-L.
, and
Xu
,
Q.-P.
,
2012
, “
A Pseudo-Rigid-Body 2R Model of Flexural Beam in Compliant Mechanisms
,”
Mech. Mach. Theory
,
55
, pp.
18
33
.
14.
Ma
,
F.
, and
Chen
,
G.
,
2014
, “
Chained Beam-Constraint-Model (CBCM): A Powerful Tool for Modeling Large and Complicated Deflections of Flexible Beams in Compliant Mechanisms
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
.
15.
Pauly
,
J.
, and
Midha
,
A.
,
2006
, “
Pseudo-Rigid-Body Model Chain Algorithm: Part 1—Introduction and Concept Development
,”
Proceedings of the ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
, pp.
173
181
.
16.
Jin
,
M.
,
Yang
,
Z.
,
Ynchausti
,
C.
,
Zhu
,
B.
,
Zhang
,
X.
, and
Howell
,
L. L.
,
2020
, “
Large-Deflection Analysis of General Beams in Contact-Aided Compliant Mechanisms Using Chained Pseudo-Rigid-Body Model
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031005
.
17.
Sen
,
S.
, and
Awtar
,
S.
,
2013
, “
A Closed-Form Nonlinear Model for the Constraint Characteristics of Symmetric Spatial Beams
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031003
.
18.
Sen
,
S.
, and
Awtar
,
S.
,
2014
, “
Nonlinear Strain Energy Formulation of a Generalized Bisymmetric Spatial Beam for Flexure Mechanism Analysis
,”
ASME J. Mech. Des.
,
136
(
2
), p. 021002.
19.
Rasmussen
,
N. O.
,
Wittwer
,
J. W.
,
Todd
,
R. H.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2006
, “
A 3D Pseudo-Rigid-Body Model for Large Spatial Deflections of Rectangular Cantilever Beams
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia
, PA, Sept. 10–13.
20.
Chase
R. P.
, Jr.
,
Todd
,
R. H.
,
Howell
,
L. L.
, and
and Magleby
,
S.
,
2011
, “
A 3-D Chain Algorithm With Pseudo-Rigid-Body Model Elements
,”
Mech. Based Des. Struct. Mach.
,
39
(
1
), pp.
142
156
.
21.
Chimento
,
J.
,
Lusk
,
C.
, and
Alqasimi
,
A.
,
2014
, “
A 3-D Pseudo-Rigid Body Model for Rectangular Cantilever Beams With an Arbitrary Force end-Load
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, New York, USA
,
August 17–2
.
22.
Nijenhuis
,
M.
,
Meijaard
,
J. P.
,
Mariappan
,
D.
,
Herder
,
J. L.
,
Brouwer
,
D. M.
, and
Awtar
,
S.
,
2017
, “
An Analytical Formulation for the Lateral Support Stiffness of a Spatial Flexure Strip
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051401
.
23.
Nijenhuis
,
M.
,
Meijaard
,
J. P.
, and
Brouwer
,
D. M.
,
2020
, “
A Spatial Closed-Form Nonlinear Stiffness Model for Sheet Flexures Based on a Mixed Variational Principle Including Third-Order Effects
,”
Precis. Eng.
,
66
, pp.
429
444
.
24.
Bai
,
R.
,
Awtar
,
S.
, and
Chen
,
G.
,
2019
, “
A Closed-Form Model for Nonlinear Spatial Deflections of Rectangular Beams in Intermediate Range
,”
Int. J. Mech. Sci.
,
160
, pp.
229
240
.
25.
Bai
,
R.
,
Chen
,
G.
, and
Awtar
,
S.
,
2021
, “
Closed-Form Solution for Nonlinear Spatial Deflections of Strip Flexures of Large Aspect Ratio Considering Second Order Load-Stiffening
,”
Mech. Mach. Theory
,
161
, p.
104324
.
26.
Bai
,
R.
,
Yang
,
N.
,
Li
,
B.
, and
Chen
,
G.
,
2024
, “
Nonlinear Strain Energy Formulation of Spatially Deflected Strip Flexures
,”
Mech. Mach. Theory
,
195
, p.
105594
.
27.
Hao
,
G.
,
Kong
,
X.
, and
Reuben
,
R. L.
,
2011
, “
A Nonlinear Analysis of Spatial Compliant Parallel Modules: Multi-Beam Modules
,”
Mech. Mach. Theory
,
46
(
5
), pp.
680
706
.
28.
Slabaugh
,
G. G.
,
1999
, “
Computing Euler Angles From a Rotation Matrix
,”
Retrieved on August
,
6
(
2000
), pp.
39
63
.
29.
Morawiec
,
A.
,
2003
,
Orientations and Rotations
,
Springer
,
New York
.
30.
Den Hartog
,
J. P.
,
1987
,
Advanced Strength of Materials
,
Courier Corporation
,
New York
.
31.
Awtar
,
S.
,
2003
, “
Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
32.
Archer
,
R. R.
,
Crandall
,
S. H.
,
Dahl
,
N. C.
, and
Lardner
,
T. J. J.
,
1959
,
An Introduction to the Mechanics of Solids
,
McGraw-Hill
,
New York
.
33.
Naves
,
M.
,
Aarts
,
R. G. K. M.
, and
Brouwer
,
D. M.
,
2019
, “
Large Stroke High Off-Axis Stiffness Three Degree of Freedom Spherical Flexure Joint
,”
Precis. Eng.
,
56
, pp.
422
431
.
34.
Schellekens
,
P.
,
Rosielle
,
N.
,
Vermeulen
,
H.
,
Vermeulen
,
M.
,
Wetzels
,
S.
, and
Pril
,
W. J. C. A.
,
1998
, “
Design for Precision: Current Status and Trends
,”
CIRP Ann.
,
47
(
2
), pp.
557
586
.
35.
Zhu
,
J.
, and
Hao
,
G.
,
2023
, “
Modelling of a General Lumped-Compliance Beam for Compliant Mechanisms
,”
Int. J. Mech. Sci.
,
263
, p.
108779
.
36.
Li
,
S.
, and
Hao
,
G.
,
2022
, “
Design and Nonlinear Spatial Analysis of Compliant Anti-Buckling Universal Joints
,”
Int. J. Mech. Sci.
,
219
, p.
107111
.
37.
Hao
,
G.
, and
Kong
,
X.
,
2013
, “
A Normalization-Based Approach to the Mobility Analysis of Spatial Compliant Multi-Beam Modules
,”
Mech. Mach. Theory
,
59
, pp.
1
19
.
38.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
39.
Rommers
,
J.
,
Naves
,
M.
,
Brouwer
,
D. M.
, and
Herder
,
J. L.
,
2021
, “
A Flexure-Based Linear Guide With Torsion Reinforcement Structures
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031001
.
40.
Hao
,
G.
, and
Zhu
,
J.
,
2019
, “
Design of a Monolithic Double-Slider Based Compliant Gripper With Large Displacement and Anti-Buckling Ability
,”
Micromachines
,
10
(
10
), p.
665
.
41.
Masters
,
N. D.
, and
Howell
,
L. L.
,
2003
, “
A Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
(
3
), pp.
273
280
.
You do not currently have access to this content.