Abstract

This article introduces a new mixed integer linear programming (MILP) approach to the modular architecture design problem based on the design structure matrix (DSM). The DSM modularization (clustering) problem aims to maximize the modularity (quantified by the Q-metric) under constraints reflecting practical design/manufacturing/maintenance considerations. A MILP formulation is developed to optimize a modular architecture under constraints. The developed formulation is verified through two case studies on the subsystems of an automobile and an electric train. Both case studies successfully demonstrate the proposed formulation's effectiveness, highlighting its practical applicability.

References

1.
Steward
,
D. V.
,
1962
, “
On an Approach to Techniques for the Analysis of the Structure of Large Systems of Equations
,”
SIAM Rev.
,
4
(
4
), pp.
321
342
.
2.
Steward
,
D. V.
,
1981
, “
The Design Structure System: A Method for Managing the Design of Complex Systems
,”
IEEE Trans. Eng. Manage.
,
EM-28
(
3
), pp.
71
74
.
3.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications
,
MIT Press
,
Cambridge, MA
.
4.
Browning
,
T. R.
,
2001
, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manage.
,
48
(
3
), pp.
292
306
.
5.
Browning
,
T. R.
,
2016
, “
Design Structure Matrix Extensions and Innovations: A Survey and New Opportunities
,”
IEEE Trans. Eng. Manage.
,
63
(
1
), pp.
27
52
.
6.
Conforti
,
M.
,
Cornuéjols
,
G.
, and
Zambelli
,
G.
,
2014
,
Integer Programming
,
Springer
,
Cham
.
7.
IBM ILOG CPLEX Optimization Studio v12.10
,
2019
, IBM, Available: https://www.ibm.com/products/ilog-cplex-optimization-studio. Accessed July 03, 2024.
8.
Gurobi Optimizer v11.0
,
2023
, Gurobi Optimization. Available: https://www.gurobi.com. Accessed July 03, 2024
9.
Crawley
,
E.
,
Cameron
,
B.
, and
Selva
,
D.
,
2015
,
System Architecture: Strategy and Product Development for Complex Systems
,
Pearson Education Limited
,
Essex, UK
.
10.
Simon
,
H. A.
,
1962
, “
The Architecture of Complexity
,”
Proc. Am. Philos. Soc.
,
106
(
6
), pp.
467
482
.
11.
Alexander
,
C.
,
1964
,
Notes on the Synthesis of Form
,
Harvard University Press
,
Cambridge, MA
.
12.
Starr
,
M. K.
,
1965
, “
Modular Production - A New Concept
,”
Harv. Bus. Rev.
,
43
(
6
), pp.
131
142
.
13.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
14.
Baldwin
,
C. Y.
, and
Clark
,
K. B.
,
2000
,
Design Rules: The Power of Modularity
,
The MIT Press
,
Cambridge, MA
.
15.
Schilling
,
M. A.
,
2000
, “
Toward a General Modular Systems Theory and Its Application to Interfirm Product Modularity
,”
Acad. Manage. Rev.
,
25
(
2
), pp.
312
334
.
16.
Sanchez
,
R.
, and
Mahoney
,
J. T.
,
1996
, “
Modularity, Flexibility, and Knowledge Management in Product and Organization Design
,”
Strateg. Manage. J.
,
17
(
52
), pp.
63
76
.
17.
Langlois
,
R. N.
,
2002
, “
Modularity in Technology and Organization
,”
J. Econ. Behav. Organ.
,
49
(
1
), pp.
19
37
.
18.
Pil
,
F. K.
, and
Cohen
,
S. K.
,
2006
, “
Modularity: Implications for Imitation, Innovation, and Sustained Advantage
,”
Acad. Manage. Rev.
,
31
(
4
), pp.
995
1011
.
19.
Campagnolo
,
D.
, and
Camuffo
,
A.
,
2010
, “
The Concept of Modularity in Management Studies: A Literature Review
,”
Int. J. Manage. Rev.
,
12
(
3
), pp.
259
283
.
20.
Frandsen
,
T.
,
2017
, “
Evolution of Modularity Literature: A 25-Year Bibliometric Analysis
,”
Int. J. Oper. Prod. Manage.
,
37
(
6
), pp.
703
747
.
21.
Mertens
,
K. G.
,
Rennpferdt
,
C.
,
Greve
,
E.
,
Krause
,
D.
, and
Meyer
,
M.
,
2023
, “
Reviewing the Intellectual Structure of Product Modularization: Toward a Common View and Future Research Agenda
,”
J. Prod. Innov. Manage.
,
40
(
1
), pp.
86
119
.
22.
Ulrich
,
K. T.
,
Eppinger
,
S. D.
, and
Yang
,
M. C.
,
2020
,
Product Design and Development
,
McGraw-Hill
,
New York
.
23.
Kusiak
,
A.
, and
Huang
,
C.-C.
,
1996
, “
Development of Modular Products
,”
IEEE Trans. Compon. Packag. Manuf. Technol.: Part A
,
19
(
4
), pp.
523
538
.
24.
Erixon
,
G.
,
1998
, “
Modular Function Deployment: A Method for Product Modularisation
,”
Ph.D. thesis
,
Royal Institute of Technology
,
Stockholm, Sweden
.
25.
Lange
,
M. W.
, and
Imsdahl
,
A.
,
2014
, “Modular Function Deployment: Using Module Drivers to Impart Strategies to a Product Architecture,”
Advances in Product Family and Product Platform Design: Methods & Applications
,
T.
in Simpson
,
J.
Jiao
,
Z.
Siddique
, and
K.
Hölttä-Otto
, eds.,
Springer
,
New York, NY
,
91
118
.
26.
Shin
,
J.-S.
, and
Kim
,
K.-J.
,
2000
, “
Complexity Reduction of a Design Problem in QFD Using Decomposition
,”
J. Intell. Manuf.
,
11
(
4
), pp.
339
354
.
27.
Hauser
,
J. R.
, and
Clausing
,
D.
,
1988
, “
The House of Quality
,”
Harv. Bus. Rev.
,
66
(
3
), pp.
63
73
.
28.
Lee
,
W. B.
,
Lau
,
H.
,
Liu
,
Z.-Z.
, and
Tam
,
S.
,
2002
, “
A Fuzzy Analytic Hierarchy Process Approach in Modular Product Design
,”
Expert Syst.
,
18
(
1
), pp.
32
42
.
29.
Borjesson
,
F.
, and
Hölttä-Otto
,
K.
,
2014
, “
A Module Generation Algorithm for Product Architecture Based on Component Interactions and Strategic Drivers
,”
Res. Eng. Des.
,
25
(
1
), pp.
31
51
.
30.
Khatib
,
R.
, and
Chacon
,
A.
,
2024
, “
Optimizing Design Structure Matrices Using Markov Chain Modeling and Community Detection
,”
IEEE Open J. Syst. Eng.
,
2
, pp.
148
156
.
31.
Williamsson
,
D.
, and
Sellgren
,
U.
,
2016
, “
An Approach to Integrated Modularization
,”
Proc. CIRP
,
50
, pp.
613
617
.
32.
Newman
,
M. E. J.
, and
Girvan
,
M.
,
2004
, “
Finding and Evaluating Community Structure in Networks
,”
Phys. Rev. E
,
69
(
2
), p.
026113
.
33.
Hölttä-Otto
,
K.
,
Chiriac
,
N. A.
,
Lysy
,
D.
, and
Suh
,
E. S.
,
2012
, “
Comparative Analysis of Coupling Modularity Metrics
,”
J. Eng. Des.
,
23
(
10–11
), pp.
790
806
.
34.
Jung
,
S.
, and
Simpson
,
T. W.
,
2017
, “
New Modularity Indices for Modularity Assessment and Clustering of Product Architecture
,”
J. Eng. Des.
,
28
(
1
), pp.
1
22
.
35.
Sinha
,
K.
,
Suh
,
E. S.
, and
de Weck
,
O.
,
2018
, “
Integrative Complexity: An Alternative Measure for System Modularity
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051101
.
36.
Idicula
,
J.
,
1995
,
Planning for Concurrent Engineering
,
Gintic Institute
,
Singapore
.
37.
Gutierrez
,
C. I.
,
1998
, “
Integration Analysis of Product Architecture to Support Effective Team Co-Location
,”
Master’s thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
38.
Thebeau
,
R. E.
,
2001
,
Knowledge Management of System Interfaces and Interactions From Product Development Processes
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
39.
Borjesson
,
F.
, and
Hölttä-Otto
,
K.
,
2012
, “
Improved Clustering Algorithm for Design Structure Matrix
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
921
930
.
40.
Blondel
,
V. D.
,
Guillaume
,
J.-L.
,
Lambiotte
,
R.
, and
Lefebvre
,
E.
,
2008
, “
Fast Unfolding of Communities in Large Networks
,”
J. Stat. Mech.: Theory Exp.
,
2008
(
10
), p.
P10008
.
41.
Leicht
,
E. A.
, and
Newman
,
M. E. J.
,
2008
, “
Community Structure in Directed Networks
,”
Phys. Rev. Lett.
,
100
(
11
), p.
118703
.
42.
Gregory
,
S.
,
2007
, “
An Algorithm to Find Overlapping Community Structure in Networks
,”
Lecture Notes Artif. Intell.
,
4702
, pp.
91
102
.
43.
Nicosia
,
V.
,
Mangioni
,
G.
,
Carchiolo
,
V.
, and
Malgeri
,
M.
,
2009
, “
Extending the Definition of Modularity to Directed Graphs With Overlapping Communities
,”
J. Stat. Mech.
,
2009
(
3
), p.
P03024
.
44.
Yu
,
T.-L.
,
Yassine
,
A. A.
, and
Goldberg
,
D. E.
,
2007
, “
An Information Theoretic Method for Developing Modular Architectures Using Genetic Algorithms
,”
Res. Eng. Des.
,
18
(
2
), pp.
91
109
.
45.
Li
,
Y.
,
Ni
,
Y.
,
Zhang
,
N.
, and
Liu
,
Z.
,
2021
, “
Modularization for the Complex Product Considering the Design Change Requirements
,”
Res. Eng. Des.
,
32
(
4
), pp.
507
522
.
46.
Meng
,
X.
,
Jiang
,
Z.
, and
Huang
,
G. Q.
,
2007
, “
On the Module Identification for Product Family Development
,”
Int. J. Adv. Manuf. Technol.
,
35
(
1–2
), pp.
26
40
.
47.
Yan
,
J.
, and
Feng
,
C.
,
2012
, “
Sustainability-Oriented Product Modular Design Using Design Structure Matrix (DSM) Method
,”
Appl. Mech. Mater.
,
128–129
, pp.
1468
1471
. www.scientific.net/AMM.128-129.1468
48.
van Beek
,
T. J.
,
Erden
,
M. S.
, and
Tomiyama
,
T.
,
2010
, “
Modular Design of Mechatronic Systems With Function Modeling
,”
Mechatronics
,
20
(
8
), pp.
850
863
.
49.
Wilschut
,
T.
,
Etman
,
L. F. P.
,
Rooda
,
J. E.
, and
Adan
,
I. J. B. F.
,
2017
, “
Multilevel Flow-Based Markov Clustering for Design Structure Matrices
,”
ASME J. Mech. Des.
,
139
(
12
), p.
121402
.
50.
Li
,
Z.
,
Cheng
,
Z.
,
Feng
,
Y.
, and
Yang
,
J.
,
2013
, “
An Integrated Method for Flexible Platform Modular Architecture Design
,”
J. Eng. Des.
,
24
(
1
), pp.
25
44
.
51.
Li
,
S.
,
2011
, “
A Matrix-Based Clustering Approach for the Decomposition of Design Problems
,”
Res. Eng. Des.
,
22
(
4
), pp.
263
278
.
52.
Ahn
,
J.
,
Choi
,
M.
, and
Suh
,
E. S.
,
2018
, “
Entropy-Based System Assessment Metric for Determining Architecture’s Robustness to Different Stakeholder Perspectives
,”
Syst. Eng.
,
21
(
5
), pp.
476
489
.
53.
Sanaei
,
R.
,
Otto
,
K.
,
Wood
,
K.
, and
Hölttä-Otto
,
K.
,
2017
, “
A Rapid Algorithm for Multi-objective Pareto Optimization of Modular Architecture
,”
21st International Conference on Engineering Design
,
Vancouver, Canada
,
Aug. 21–25
, pp.
169
178
.
54.
Sanaei
,
R.
,
Otto
,
K.
,
Hölttä-Otto
,
K.
, and
Luo
,
J.
,
2015
, “
Trade-Off Analysis of System Architecture Modularity Using Design Structure Matrix
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, p.
V02BT03A037
.
55.
Suh
,
E. S.
,
Sinha
,
K.
, and
Ahn
,
J.
,
2020
, “
Multi-attribute Optimization-Based System Decomposition Considering Several Value Chain Stakeholder Perspectives
,”
Res. Eng. Des.
,
31
(
4
), pp.
411
428
.
56.
Baylis
,
K.
,
Zhang
,
G.
, and
McAdams
,
D. A.
,
2018
, “
Product Family Platform Selection Using a Pareto Front of Maximum Commonality and Strategic Modularity
,”
Res. Eng. Des.
,
29
(
4
), pp.
547
563
.
57.
Sinha
,
K.
, and
Suh
,
E. S.
,
2018
, “
Pareto-Optimization of Complex System Architecture for Structural Complexity and Modularity
,”
Res. Eng. Des.
,
29
(
1
), pp.
123
141
.
58.
Sanaei
,
R.
,
Otto
,
K.
,
Hölttä-Otto
,
K.
, and
Wood
,
K. L.
,
2016
, “
Incorporating Constraints in System Modularization by Interactive Clustering of Design Structure Matrices
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, p.
V02BT03A042
.
59.
Otto
,
K.
,
Hölttä-Otto
,
K.
,
Sanaei
,
R.
, and
Wood
,
K. L.
,
2020
, “
Incorporating Field Effects Into Functional Product-System Architecting Methods
,”
ASME J. Mech. Des.
,
142
(
4
), p.
041402
.
60.
Sinha
,
K.
,
Han
,
S.-Y.
, and
Suh
,
E. S.
,
2020
, “
Design Structure Matrix-Based Modularization Approach for Complex Systems With Multiple Design Constraints
,”
Syst. Eng.
,
23
(
2
), pp.
211
220
.
61.
Sanaei
,
R.
,
Otto
,
K.
,
Hölttä-Otto
,
K.
, and
Wood
,
K.
,
2023
, “
A Reinforcement Learning Approach to System Modularization Under Constraints
,”
Syst. Eng.
,
26
(
4
), pp.
408
424
.
62.
Dinler
,
D.
, and
Tural
,
M. K.
,
2016
, “A Survey of Constrained Clustering,”
Unsupervised Learning Algorithms
,
M.
Celebi
, and
K.
Aydin
, eds.,
Springer
,
Cham, Switzerland
, pp.
207
235
.
63.
Gançarski
,
P.
,
Dao
,
T.-B.-H.
,
Crémilleux
,
B.
,
Forestier
,
G.
, and
Lampert
,
T.
,
2020
, “Constrained Clustering: Current and New Trends,”
A Guided Tour of Artificial Intelligence Research
,
P.
in Marquis
,
O.
Papini
, and
H.
Prade
, eds.,
Springer
,
Cham, Switzerland
, pp.
447
484
.
64.
Fortet
,
R.
,
1960
, “
Applications de L’Algebre de Boole en Recherche Opérationelle
,”
Rev. Française Recher. Opér.
,
4
(
14
), pp.
17
26
.
65.
Kim
,
G.
,
Kwon
,
Y.
,
Suh
,
E. S.
, and
Ahn
,
J.
,
2017
, “
Correlation Between Architectural Complexity of Engineering Systems and Actual System Design Effort
,”
ASME J. Mech. Des.
,
139
(
3
), p.
034501
.
66.
Sheard
,
S. A.
, and
Mostashari
,
A.
,
2013
, “
5.2.2. Complexity Measures to Predict System Development Project Outcomes
,”
INCOSE International Symposium
,
Philadelphia, PA
,
June 24–27
, pp.
170
183
.
67.
Bralla
,
J. G.
,
1986
,
Handbook of Product Design for Manufacturing
,
McGraw-Hill
,
New York, NY
.
68.
Clark
,
K. B.
, and
Fujimoto
,
T.
,
1989
, “
Lead Time in Automobile Product Development Explaining the Japanese Advantage
,”
J. Eng. Technol. Manage.
,
6
(
1
), pp.
25
58
.
69.
Polančič
,
G.
, and
Cegnar
,
B.
,
2017
, “
Complexity Metrics for Process Models—A Systematic Literature Review
,”
Comput. Stand. Inter.
,
51
, pp.
104
117
.
70.
Inman
,
R. R.
, and
Blumenfeld
,
D. E.
,
2014
, “
Product Complexity and Supply Chain Design
,”
Int. J. Prod. Res.
,
52
(
7
), pp.
1956
1969
.
71.
Weyuker
,
E. J.
,
1988
, “
Evaluating Software Complexity Measures
,”
IEEE Trans. Software Eng.
,
14
(
9
), pp.
1357
1365
.
72.
Azuma
,
M.
, and
Mole
,
D.
,
1994
, “
Software Management Practice and Metrics in the European Community and Japan: Some Results of a Survey
,”
J. Syst. Softw.
,
26
(
1
), pp.
5
18
.
73.
Wertz
,
J. R.
,
Everett
,
D. F.
, and
Puschell
,
J. J.
,
2011
,
Space Mission Engineering: The New SMAD
,
Microcosm Press
,
Torrance, CA
.
74.
Ehrgott
,
M.
,
2006
, “
A Discussion of Scalarization Techniques for Multiple Objective Integer Programming
,”
Ann. Oper. Res.
,
147
(
1
), pp.
343
360
.
75.
Haimes
,
Y. Y.
,
Lasdon
,
L. S.
, and
Wismer
,
D. A.
,
1971
, “
On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization
,”
IEEE Trans. Syst. Man. Cybern.
,
1
, pp.
296
297
.
You do not currently have access to this content.