Abstract
This article introduces a new mixed integer linear programming (MILP) approach to the modular architecture design problem based on the design structure matrix (DSM). The DSM modularization (clustering) problem aims to maximize the modularity (quantified by the Q-metric) under constraints reflecting practical design/manufacturing/maintenance considerations. A MILP formulation is developed to optimize a modular architecture under constraints. The developed formulation is verified through two case studies on the subsystems of an automobile and an electric train. Both case studies successfully demonstrate the proposed formulation's effectiveness, highlighting its practical applicability.
References
1.
Steward
, D. V.
, 1962
, “On an Approach to Techniques for the Analysis of the Structure of Large Systems of Equations
,” SIAM Rev.
, 4
(4
), pp. 321
–342
. 2.
Steward
, D. V.
, 1981
, “The Design Structure System: A Method for Managing the Design of Complex Systems
,” IEEE Trans. Eng. Manage.
, EM-28
(3
), pp. 71
–74
. 3.
Eppinger
, S. D.
, and Browning
, T. R.
, 2012
, Design Structure Matrix Methods and Applications
, MIT Press
, Cambridge, MA
.4.
Browning
, T. R.
, 2001
, “Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,” IEEE Trans. Eng. Manage.
, 48
(3
), pp. 292
–306
. 5.
Browning
, T. R.
, 2016
, “Design Structure Matrix Extensions and Innovations: A Survey and New Opportunities
,” IEEE Trans. Eng. Manage.
, 63
(1
), pp. 27
–52
. 6.
Conforti
, M.
, Cornuéjols
, G.
, and Zambelli
, G.
, 2014
, Integer Programming
, Springer
, Cham
.7.
IBM ILOG CPLEX Optimization Studio v12.10
, 2019
, IBM, Available: https://www.ibm.com/products/ilog-cplex-optimization-studio. Accessed July 03, 2024.8.
Gurobi Optimizer v11.0
, 2023
, Gurobi Optimization. Available: https://www.gurobi.com. Accessed July 03, 20249.
Crawley
, E.
, Cameron
, B.
, and Selva
, D.
, 2015
, System Architecture: Strategy and Product Development for Complex Systems
, Pearson Education Limited
, Essex, UK
.10.
Simon
, H. A.
, 1962
, “The Architecture of Complexity
,” Proc. Am. Philos. Soc.
, 106
(6
), pp. 467
–482
.11.
Alexander
, C.
, 1964
, Notes on the Synthesis of Form
, Harvard University Press
, Cambridge, MA
.12.
Starr
, M. K.
, 1965
, “Modular Production - A New Concept
,” Harv. Bus. Rev.
, 43
(6
), pp. 131
–142
.13.
Ulrich
, K.
, 1995
, “The Role of Product Architecture in the Manufacturing Firm
,” Res. Policy
, 24
(3
), pp. 419
–440
. 14.
Baldwin
, C. Y.
, and Clark
, K. B.
, 2000
, Design Rules: The Power of Modularity
, The MIT Press
, Cambridge, MA
.15.
Schilling
, M. A.
, 2000
, “Toward a General Modular Systems Theory and Its Application to Interfirm Product Modularity
,” Acad. Manage. Rev.
, 25
(2
), pp. 312
–334
. 16.
Sanchez
, R.
, and Mahoney
, J. T.
, 1996
, “Modularity, Flexibility, and Knowledge Management in Product and Organization Design
,” Strateg. Manage. J.
, 17
(52
), pp. 63
–76
. 17.
Langlois
, R. N.
, 2002
, “Modularity in Technology and Organization
,” J. Econ. Behav. Organ.
, 49
(1
), pp. 19
–37
. 18.
Pil
, F. K.
, and Cohen
, S. K.
, 2006
, “Modularity: Implications for Imitation, Innovation, and Sustained Advantage
,” Acad. Manage. Rev.
, 31
(4
), pp. 995
–1011
. 19.
Campagnolo
, D.
, and Camuffo
, A.
, 2010
, “The Concept of Modularity in Management Studies: A Literature Review
,” Int. J. Manage. Rev.
, 12
(3
), pp. 259
–283
. 20.
Frandsen
, T.
, 2017
, “Evolution of Modularity Literature: A 25-Year Bibliometric Analysis
,” Int. J. Oper. Prod. Manage.
, 37
(6
), pp. 703
–747
. 21.
Mertens
, K. G.
, Rennpferdt
, C.
, Greve
, E.
, Krause
, D.
, and Meyer
, M.
, 2023
, “Reviewing the Intellectual Structure of Product Modularization: Toward a Common View and Future Research Agenda
,” J. Prod. Innov. Manage.
, 40
(1
), pp. 86
–119
. 22.
Ulrich
, K. T.
, Eppinger
, S. D.
, and Yang
, M. C.
, 2020
, Product Design and Development
, McGraw-Hill
, New York
.23.
Kusiak
, A.
, and Huang
, C.-C.
, 1996
, “Development of Modular Products
,” IEEE Trans. Compon. Packag. Manuf. Technol.: Part A
, 19
(4
), pp. 523
–538
. 24.
Erixon
, G.
, 1998
, “Modular Function Deployment: A Method for Product Modularisation
,” Ph.D. thesis
, Royal Institute of Technology
, Stockholm, Sweden
.25.
Lange
, M. W.
, and Imsdahl
, A.
, 2014
, “Modular Function Deployment: Using Module Drivers to Impart Strategies to a Product Architecture,” Advances in Product Family and Product Platform Design: Methods & Applications
, T.
in Simpson
, J.
Jiao
, Z.
Siddique
, and K.
Hölttä-Otto
, eds., Springer
, New York, NY
, 91
–118
.26.
Shin
, J.-S.
, and Kim
, K.-J.
, 2000
, “Complexity Reduction of a Design Problem in QFD Using Decomposition
,” J. Intell. Manuf.
, 11
(4
), pp. 339
–354
. 27.
Hauser
, J. R.
, and Clausing
, D.
, 1988
, “The House of Quality
,” Harv. Bus. Rev.
, 66
(3
), pp. 63
–73
.28.
Lee
, W. B.
, Lau
, H.
, Liu
, Z.-Z.
, and Tam
, S.
, 2002
, “A Fuzzy Analytic Hierarchy Process Approach in Modular Product Design
,” Expert Syst.
, 18
(1
), pp. 32
–42
. 29.
Borjesson
, F.
, and Hölttä-Otto
, K.
, 2014
, “A Module Generation Algorithm for Product Architecture Based on Component Interactions and Strategic Drivers
,” Res. Eng. Des.
, 25
(1
), pp. 31
–51
. 30.
Khatib
, R.
, and Chacon
, A.
, 2024
, “Optimizing Design Structure Matrices Using Markov Chain Modeling and Community Detection
,” IEEE Open J. Syst. Eng.
, 2
, pp. 148
–156
. 31.
Williamsson
, D.
, and Sellgren
, U.
, 2016
, “An Approach to Integrated Modularization
,” Proc. CIRP
, 50
, pp. 613
–617
. 32.
Newman
, M. E. J.
, and Girvan
, M.
, 2004
, “Finding and Evaluating Community Structure in Networks
,” Phys. Rev. E
, 69
(2
), p. 026113
. 33.
Hölttä-Otto
, K.
, Chiriac
, N. A.
, Lysy
, D.
, and Suh
, E. S.
, 2012
, “Comparative Analysis of Coupling Modularity Metrics
,” J. Eng. Des.
, 23
(10–11
), pp. 790
–806
. 34.
Jung
, S.
, and Simpson
, T. W.
, 2017
, “New Modularity Indices for Modularity Assessment and Clustering of Product Architecture
,” J. Eng. Des.
, 28
(1
), pp. 1
–22
. 35.
Sinha
, K.
, Suh
, E. S.
, and de Weck
, O.
, 2018
, “Integrative Complexity: An Alternative Measure for System Modularity
,” ASME J. Mech. Des.
, 140
(5
), p. 051101
. 36.
Idicula
, J.
, 1995
, Planning for Concurrent Engineering
, Gintic Institute
, Singapore
.37.
Gutierrez
, C. I.
, 1998
, “Integration Analysis of Product Architecture to Support Effective Team Co-Location
,” Master’s thesis
, Massachusetts Institute of Technology
, Cambridge, MA
.38.
Thebeau
, R. E.
, 2001
, Knowledge Management of System Interfaces and Interactions From Product Development Processes
, Massachusetts Institute of Technology
, Cambridge, MA
.39.
Borjesson
, F.
, and Hölttä-Otto
, K.
, 2012
, “Improved Clustering Algorithm for Design Structure Matrix
,” Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago, IL
, Aug. 12–15
, pp. 921
–930
.40.
Blondel
, V. D.
, Guillaume
, J.-L.
, Lambiotte
, R.
, and Lefebvre
, E.
, 2008
, “Fast Unfolding of Communities in Large Networks
,” J. Stat. Mech.: Theory Exp.
, 2008
(10
), p. P10008
. 41.
Leicht
, E. A.
, and Newman
, M. E. J.
, 2008
, “Community Structure in Directed Networks
,” Phys. Rev. Lett.
, 100
(11
), p. 118703
. 42.
Gregory
, S.
, 2007
, “An Algorithm to Find Overlapping Community Structure in Networks
,” Lecture Notes Artif. Intell.
, 4702
, pp. 91
–102
. 43.
Nicosia
, V.
, Mangioni
, G.
, Carchiolo
, V.
, and Malgeri
, M.
, 2009
, “Extending the Definition of Modularity to Directed Graphs With Overlapping Communities
,” J. Stat. Mech.
, 2009
(3
), p. P03024
. 44.
Yu
, T.-L.
, Yassine
, A. A.
, and Goldberg
, D. E.
, 2007
, “An Information Theoretic Method for Developing Modular Architectures Using Genetic Algorithms
,” Res. Eng. Des.
, 18
(2
), pp. 91
–109
. 45.
Li
, Y.
, Ni
, Y.
, Zhang
, N.
, and Liu
, Z.
, 2021
, “Modularization for the Complex Product Considering the Design Change Requirements
,” Res. Eng. Des.
, 32
(4
), pp. 507
–522
. 46.
Meng
, X.
, Jiang
, Z.
, and Huang
, G. Q.
, 2007
, “On the Module Identification for Product Family Development
,” Int. J. Adv. Manuf. Technol.
, 35
(1–2
), pp. 26
–40
. 47.
Yan
, J.
, and Feng
, C.
, 2012
, “Sustainability-Oriented Product Modular Design Using Design Structure Matrix (DSM) Method
,” Appl. Mech. Mater.
, 128–129
, pp. 1468
–1471
. www.scientific.net/AMM.128-129.146848.
van Beek
, T. J.
, Erden
, M. S.
, and Tomiyama
, T.
, 2010
, “Modular Design of Mechatronic Systems With Function Modeling
,” Mechatronics
, 20
(8
), pp. 850
–863
. 49.
Wilschut
, T.
, Etman
, L. F. P.
, Rooda
, J. E.
, and Adan
, I. J. B. F.
, 2017
, “Multilevel Flow-Based Markov Clustering for Design Structure Matrices
,” ASME J. Mech. Des.
, 139
(12
), p. 121402
. 50.
Li
, Z.
, Cheng
, Z.
, Feng
, Y.
, and Yang
, J.
, 2013
, “An Integrated Method for Flexible Platform Modular Architecture Design
,” J. Eng. Des.
, 24
(1
), pp. 25
–44
. 51.
Li
, S.
, 2011
, “A Matrix-Based Clustering Approach for the Decomposition of Design Problems
,” Res. Eng. Des.
, 22
(4
), pp. 263
–278
. 52.
Ahn
, J.
, Choi
, M.
, and Suh
, E. S.
, 2018
, “Entropy-Based System Assessment Metric for Determining Architecture’s Robustness to Different Stakeholder Perspectives
,” Syst. Eng.
, 21
(5
), pp. 476
–489
. 53.
Sanaei
, R.
, Otto
, K.
, Wood
, K.
, and Hölttä-Otto
, K.
, 2017
, “A Rapid Algorithm for Multi-objective Pareto Optimization of Modular Architecture
,” 21st International Conference on Engineering Design
, Vancouver, Canada
, Aug. 21–25
, pp. 169
–178
.54.
Sanaei
, R.
, Otto
, K.
, Hölttä-Otto
, K.
, and Luo
, J.
, 2015
, “Trade-Off Analysis of System Architecture Modularity Using Design Structure Matrix
,” ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Boston, MA
, Aug. 2–5
, p. V02BT03A037
.55.
Suh
, E. S.
, Sinha
, K.
, and Ahn
, J.
, 2020
, “Multi-attribute Optimization-Based System Decomposition Considering Several Value Chain Stakeholder Perspectives
,” Res. Eng. Des.
, 31
(4
), pp. 411
–428
. 56.
Baylis
, K.
, Zhang
, G.
, and McAdams
, D. A.
, 2018
, “Product Family Platform Selection Using a Pareto Front of Maximum Commonality and Strategic Modularity
,” Res. Eng. Des.
, 29
(4
), pp. 547
–563
. 57.
Sinha
, K.
, and Suh
, E. S.
, 2018
, “Pareto-Optimization of Complex System Architecture for Structural Complexity and Modularity
,” Res. Eng. Des.
, 29
(1
), pp. 123
–141
. 58.
Sanaei
, R.
, Otto
, K.
, Hölttä-Otto
, K.
, and Wood
, K. L.
, 2016
, “Incorporating Constraints in System Modularization by Interactive Clustering of Design Structure Matrices
,” ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Charlotte, NC
, Aug. 21–24
, p. V02BT03A042
.59.
Otto
, K.
, Hölttä-Otto
, K.
, Sanaei
, R.
, and Wood
, K. L.
, 2020
, “Incorporating Field Effects Into Functional Product-System Architecting Methods
,” ASME J. Mech. Des.
, 142
(4
), p. 041402
. 60.
Sinha
, K.
, Han
, S.-Y.
, and Suh
, E. S.
, 2020
, “Design Structure Matrix-Based Modularization Approach for Complex Systems With Multiple Design Constraints
,” Syst. Eng.
, 23
(2
), pp. 211
–220
. 61.
Sanaei
, R.
, Otto
, K.
, Hölttä-Otto
, K.
, and Wood
, K.
, 2023
, “A Reinforcement Learning Approach to System Modularization Under Constraints
,” Syst. Eng.
, 26
(4
), pp. 408
–424
. 62.
Dinler
, D.
, and Tural
, M. K.
, 2016
, “A Survey of Constrained Clustering,” Unsupervised Learning Algorithms
, M.
Celebi
, and K.
Aydin
, eds., Springer
, Cham, Switzerland
, pp. 207
–235
.63.
Gançarski
, P.
, Dao
, T.-B.-H.
, Crémilleux
, B.
, Forestier
, G.
, and Lampert
, T.
, 2020
, “Constrained Clustering: Current and New Trends,” A Guided Tour of Artificial Intelligence Research
, P.
in Marquis
, O.
Papini
, and H.
Prade
, eds., Springer
, Cham, Switzerland
, pp. 447
–484
.64.
Fortet
, R.
, 1960
, “Applications de L’Algebre de Boole en Recherche Opérationelle
,” Rev. Française Recher. Opér.
, 4
(14
), pp. 17
–26
.65.
Kim
, G.
, Kwon
, Y.
, Suh
, E. S.
, and Ahn
, J.
, 2017
, “Correlation Between Architectural Complexity of Engineering Systems and Actual System Design Effort
,” ASME J. Mech. Des.
, 139
(3
), p. 034501
. 66.
Sheard
, S. A.
, and Mostashari
, A.
, 2013
, “5.2.2. Complexity Measures to Predict System Development Project Outcomes
,” INCOSE International Symposium
, Philadelphia, PA
, June 24–27
, pp. 170
–183
.67.
Bralla
, J. G.
, 1986
, Handbook of Product Design for Manufacturing
, McGraw-Hill
, New York, NY
.68.
Clark
, K. B.
, and Fujimoto
, T.
, 1989
, “Lead Time in Automobile Product Development Explaining the Japanese Advantage
,” J. Eng. Technol. Manage.
, 6
(1
), pp. 25
–58
. 69.
Polančič
, G.
, and Cegnar
, B.
, 2017
, “Complexity Metrics for Process Models—A Systematic Literature Review
,” Comput. Stand. Inter.
, 51
, pp. 104
–117
. 70.
Inman
, R. R.
, and Blumenfeld
, D. E.
, 2014
, “Product Complexity and Supply Chain Design
,” Int. J. Prod. Res.
, 52
(7
), pp. 1956
–1969
. 71.
Weyuker
, E. J.
, 1988
, “Evaluating Software Complexity Measures
,” IEEE Trans. Software Eng.
, 14
(9
), pp. 1357
–1365
. 72.
Azuma
, M.
, and Mole
, D.
, 1994
, “Software Management Practice and Metrics in the European Community and Japan: Some Results of a Survey
,” J. Syst. Softw.
, 26
(1
), pp. 5
–18
. 73.
Wertz
, J. R.
, Everett
, D. F.
, and Puschell
, J. J.
, 2011
, Space Mission Engineering: The New SMAD
, Microcosm Press
, Torrance, CA
.74.
Ehrgott
, M.
, 2006
, “A Discussion of Scalarization Techniques for Multiple Objective Integer Programming
,” Ann. Oper. Res.
, 147
(1
), pp. 343
–360
. 75.
Haimes
, Y. Y.
, Lasdon
, L. S.
, and Wismer
, D. A.
, 1971
, “On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization
,” IEEE Trans. Syst. Man. Cybern.
, 1
, pp. 296
–297
. Copyright © 2025 by ASME
You do not currently have access to this content.