Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The sit-to-stand (STS) motion is a crucial activity in the daily lives of individuals, and its impairment can significantly impact independence and mobility, particularly among disabled individuals. Addressing this challenge necessitates the design of mobility assist devices that can simultaneously satisfy multiple conflicting constraints. The effective design of such devices often involves the generation of numerous conceptual mechanism designs. This paper introduces an innovative single-degree-of-freedom (DOF) mechanism synthesis process for developing a highly customizable sit-to-stand (STS) mechanical device by integrating rigid body kinematics with machine learning. Unlike traditional mechanism synthesis approaches that primarily focus on limited functional requirements, such as path or motion generation, our proposed design pipeline efficiently generates a large number of 1DOF mechanism geometries and their corresponding motion paths, known as coupler curves. Leveraging a generative deep neural network, we establish a probabilistic distribution of coupler curves and their mapping to mechanism parameters. Additionally, we introduce novel metrics for quantitatively evaluating and prioritizing design concepts. The methodology yields a diverse set of viable conceptual design solutions that adhere to the specified constraints. We showcase various single-degree-of-freedom six-bar linkage mechanisms designed for STS motion, presenting them in a ranked order based on established criteria. While the primary focus is on the integration of STS motion into a versatile mobility assist device, the proposed approach holds broad applicability for addressing design challenges in various applications.

References

1.
Kerr
,
A.
,
Dall
,
P.
, and
Ryan
,
C.
,
2010
, “
Frequency of the Sit-to-Stand Task: A Pilot Study of Free-Living Adults
,”
Appl. Ergon.
,
41
(
1
), pp.
58
61
.
2.
Gell
,
N. M.
,
Wallace
,
R. B.
,
LaCroix
,
A. Z.
,
Mroz
,
T. M.
, and
Patel
,
K. V.
,
2015
, “
Mobility Device Use in Older Adults and Incidence of Falls and Worry About Falling: Findings From the 2011–2012 National Health and Aging Trends Study
,”
J. Am. Geriatrics Soc.
,
63
(
5
), pp.
853
859
.
3.
Russell
,
J. N.
,
Hendershot
,
G. E.
,
LeClere
,
F.
,
Howie
,
L. J.
, and
Adler
,
M.
,
1994
, “
Trends and Differential Use of Assistive Technology Devices: United States, 1994
,”
Adv. Data
,
1997
(
292
), pp.
1
9
.
4.
Heidari
,
O.
,
Wolbrecht
,
E. T.
,
Perez-Gracia
,
A.
, and
Yihun
,
Y. S.
,
2018
, “
A Task-Based Design Methodology for Robotic Exoskeletons
,”
J. Rehabil. Assistive Technol. Eng.
,
5
, p.
2055668318800672
.
5.
Torres-Moreno
,
J.
,
Cruz
,
N.
,
Álvarez
,
J.
,
Redondo
,
J.
, and
Giménez-Fernandez
,
A.
,
2022
, “
An Open-Source Tool for Path Synthesis of Four-Bar Mechanisms
,”
Mech. Mach. Theory
,
169
, p.
104604
.
6.
Rao
,
R.
,
Savsani
,
V.
, and
Vakharia
,
D.
,
2012
, “
Teaching-Learning-Based Optimization: An Optimization Method for Continuous Non-Linear Large Scale Problems
,”
Inf. Sci.
,
183
(
1
), pp.
1
15
.
7.
Cabrera
,
J.
,
Ortiz
,
A.
,
Nadal
,
F.
, and
Castillo
,
J.
,
2011
, “
An Evolutionary Algorithm for Path Synthesis of Mechanisms
,”
Mech. Mach. Theory
,
46
(
2
), pp.
127
141
.
8.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution – A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.
9.
Vasiliu
,
A.
, and
Yannou
,
B.
,
2001
, “
Dimensional Synthesis of Planar Mechanisms Using Neural Networks: Application to Path Generator Linkages
,”
Mech. Mach. Theory
,
36
(
2
), pp.
299
310
.
10.
Plecnik
,
M. M.
,
2015
, “The Kinematic Design of Six-bar Linkages Using Polynomial Homotopy Continuation,” Ph.D. thesis,
University of California
,
Irvine, CA
.
11.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “Auto-Encoding Variational Bayes,” Computing Research Repository, abs/1312.6114.
12.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “Generative Adversarial Networks,”
Advances in Neural Information Processing Systems
, Vol.
27
,
Z.
Ghahramani
,
M.
Welling
,
C.
Cortes
,
N.
Lawrence
,
K. Q.
Weinberger
, eds.,
Curran Associates, Inc
.
13.
Erdman
,
A. G.
,
1981
, “
Computer-Aided Design of Mechanisms: 1984 and Beyond
,”
Mech. Mach. Theory J.
,
20
(
4
), pp.
245
250
.
14.
Sherman
,
S. N.
,
Hauenstein
,
J. D.
, and
Wampler
,
C. W.
,
2021
, “
A General Method for Constructing Planar Cognate Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031009
.
15.
Norton
,
R.
,
2011
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
, 5th ed.,
McGraw Hill
,
New York
.
16.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1991
,
Mechanism Design: Analysis and Synthesis
, 2nd ed., Vol.
1
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
17.
Tsuge
,
B. Y.
, and
McCarthy
,
J. M.
,
2016
, “
An Adjustable Single Degree-of-Freedom System to Guide Natural Walking Movement for Rehabilitation
,”
ASME J. Med. Devices
,
10
(
4
), p.
044501
.
18.
Ghosh
,
S.
,
Robson
,
N. P.
, and
McCarthy
,
J. M.
,
2020
, “
Kinematic Design and Evaluation of a Six-Bar Knee-Ankle-Foot Orthosis
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
3
(
2
), p.
021111
.
19.
Yu
,
C.
,
Ye
,
J.
,
Jia
,
J.
,
Zhao
,
X.
,
Chen
,
Z.
, and
Chen
,
J.
,
2021
, “
Design, Synthesis, and Experiment of Foot-Driven Lower Limb Rehabilitation Mechanisms
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021001
.
20.
Loya
,
A.
,
Deshpande
,
S.
, and
Purwar
,
A.
,
2020
, “
Machine Learning Driven Individualized Gait Rehabilitation: Classification, Prediction, and Mechanism Design
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
3
(
2
), p.
021105
.
21.
Zhao
,
P.
,
Zhu
,
L.
,
Zi
,
B.
, and
Li
,
X.
,
2019
, “
Design of Planar 1-DOF CAM-Linkages for Lower-Limb Rehabilitation Via Kinematic-Mapping Motion Synthesis Framework
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041006
.
22.
Zhao
,
P.
,
Zhang
,
Y.
,
Guan
,
H.
,
Deng
,
X.
, and
Chen
,
H.
,
2021
, “
Design of a Single-Degree-of-Freedom Immersive Rehabilitation Device for Clustered Upper-Limb Motion
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031006
.
23.
Kong
,
K.
, and
Tomizuka
,
M.
,
2012
, “
Design of a Rehabilitation Device Based on a Mechanical Link System
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
035001
24.
Kapsalyamov
,
A.
,
Hussain
,
S.
,
Brown
,
N. A.
,
Goecke
,
R.
,
Hayat
,
M.
, and
Jamwal
,
P. K.
,
2023
, “
Synthesis of a Six-Bar Mechanism for Generating Knee and Ankle Motion Trajectories Using Deep Generative Neural Network
,”
Eng. Appl. Artif. Intell.
,
117
(Part A), p.
105500
.
25.
Ge
,
Q.
,
Purwar
,
A.
,
Zhao
,
P.
, and
Deshpande
,
S.
,
2017
, “
A Task-Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031011
.
26.
Ge
,
Q. J.
,
Zhao
,
P.
,
Purwar
,
A.
, and
Li
,
X.
,
2012
, “
A Novel Approach to Algebraic Fitting of a Pencil of Quadrics for Planar 4R Motion Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), p.
041003
.
27.
Zhao
,
P.
,
Li
,
X.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2016
, “
A Task-Driven Unified Synthesis of Planar Four-Bar and Six-Bar Linkages With R- and P-Joints for Five-Position Realization
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061003
.
28.
Deshpande
,
S.
, and
Purwar
,
A.
,
2017
, “
A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061005
.
29.
Deshpande
,
S.
, and
Purwar
,
A.
,
2022
, “A Unified Approach to Dyad and Triad Synthesis for Planar Mechanisms for Motion Generation,”
Proceedings of the 2022 USCToMM Symposium on Mechanical Systems and Robotics
,
P.
Larochelle
,
J. M.
McCarthy
, eds.,
Springer International Publishing
,
New York
, pp.
243
261
.
30.
Purwar
,
A.
,
Deshpande
,
S.
, and
Ge
,
Q. J.
,
2017
, “
Motiongen: Interactive Design and Editing of Planar Four-Bar Motions Via a Unified Framework for Generating Pose- and Geometric-Constraints
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
024504
.
31.
Chase
,
T. R.
, and
Mirth
,
J. A.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
.
32.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
Dover Publication Inc.
,
New York
.
33.
Ravani
,
B.
, and
Roth
,
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
ASME J. Mech. Transm. Autom. Des.
,
105
(
3
), pp.
460
467
.
34.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
The MIT Press
,
Cambridge, MA
.
35.
Wu
,
J.
,
Ge
,
Q. J.
,
Gao
,
F.
, and
Guo
,
W. Z.
,
2011
, “
On the Extension of a Fourier Descriptor Based Method for Planar Four-Bar Linkage Synthesis for Generation of Open and Closed Paths
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031002
.
36.
Mcgarva
,
J. R.
,
1994
, “
Rapid Search and Selection of Path Generating Mechanisms From a Library
,”
Mech. Mach. Theory
,
29
(
2
), pp.
223
235
.
37.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
504
510
.
38.
Khan
,
N.
,
Ullah
,
I.
, and
Al-Grafi
,
M.
,
2015
, “
Dimensional Synthesis of Mechanical Linkages Using Artificial Neural Networks and Fourier Descriptors
,”
Mech. Sci.
,
6
(
1
), pp.
29
34
.
39.
Vermeer
,
K.
,
Kuppens
,
R.
, and
Herder
,
J.
,
2018
, “
Kinematic Synthesis Using Reinforcement Learning
,”
Volume 2A: 44th Design Automation Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
, p. V02AT03A009.
40.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021004
.
41.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
Computational Creativity Via Assisted Variational Synthesis of Mechanisms Using Deep Generative Models
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121402
.
42.
Purwar
,
A.
, and
Chakraborty
,
N.
,
2023
, “
Deep Learning-Driven Design of Robot Mechanisms
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060811
.
43.
Sharma
,
S.
, and
Purwar
,
A.
,
2022
, “
A Machine Learning Approach to Solve the Alt-Burmester Problem for Synthesis of Defect-Free Spatial Mechanisms
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021003
44.
Deshpande
,
S.
, and
Purwar
,
A.
,
2020
, “
An Image-Based Approach to Variational Path Synthesis of Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021005
.
45.
Nobari
,
A. H.
,
Srivastava
,
A.
,
Gutfreund
,
D.
, and
Ahmed
,
F.
,
2022
, “
LINKS: A Dataset of a Hundred Million Planar Linkage Mechanisms for Data-Driven Kinematic Design
,”
Volume 3A: 48th Design Automation Conference (DAC)
,
St. Louis, MO
,
Aug. 14–17
,
American Society of Mechanical Engineers
, p. V03AT03A013.
46.
Chen
,
Y.
,
Lu
,
C.
,
Fan
,
W.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
Data-Driven Design and Morphological Analysis of Conical Six-Fold Origami Structures
,”
Thin-Walled Struct.
,
185
, p.
110626
.
47.
Chen
,
Y.
,
Shi
,
J.
,
He
,
R.
,
Lu
,
C.
,
Shi
,
P.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
A Unified Inverse Design and Optimization Workflow for the Miura-Oring Metastructure
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091704
.
48.
Nurizada
,
A.
, and
Purwar
,
A.
,
2023
, “
An Invariant Representation of Coupler Curves Using a Variational AutoEncoder: Application to Path Synthesis of Four-Bar Mechanisms
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
1
), p.
011008
.
49.
Sener
,
S.
, and
Unel
,
M.
,
2006
, “
Geometric Invariant Curve and Surface Normalization
,”
International Conference on Image Analysis and Recognition
.
Póvoa de Varzim, Portugal
,
Sept. 18–20
, pp
445
456
.
50.
Hyvärinen
,
A.
,
Karhunen
,
J.
, and
Oja
,
E.
,
2004
,
Independent Component Analysis
,
Wiley
.
51.
Hyvarinen
,
A.
,
1999
, “
Fast and Robust Fixed-Point Algorithms for Independent Component Analysis
,”
IEEE Trans. Neural Networks
,
10
(
3
), pp.
626
634
.
52.
Bottou
,
L.
,
2010
, “
Large-Scale Machine Learning With Stochastic Gradient Descent
,”
Proceedings of COMPSTAT’2010
,
Paris, France
,
Aug. 27–31
,
Springer
, pp.
177
186
.
53.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.
54.
Oring
,
A.
,
Yakhini
,
Z.
, and
Hel-Or
,
Y.
,
2021
, “
Autoencoder Image Interpolation by Shaping the Latent Space
,” Proceedings of the 38th International Conference on Machine Learning,
M.
Meila
,
T.
Zhang
, eds., Vol.
139
,
PMLR
, pp.
8281
8290
.
55.
Berndt
,
D. J.
, and
Clifford
,
J.
,
1994
, “
Using Dynamic Time Warping to Find Patterns in Time Series
,” P
roceedings of AAAI Workshop on Knowledge Discovery in Databases
,
Seattle, WA
,
July 31–Aug. 1
, pp.
359
370
.
56.
Lyu
,
Z.
,
Purwar
,
A.
, and
Liao
,
W.
,
2023
, “
A Unified Real-Time Motion Generation Algorithm for Approximate Position Analysis of Planar N-Bar Mechanisms
,”
ASME J. Mech. Des.
,
146
(
6
), p.
063302
.
57.
Li
,
J.
,
Xue
,
Q.
,
Yang
,
S.
,
Han
,
X.
,
Zhang
,
S.
,
Li
,
M.
, and
Guo
,
J.
,
2021
, “
Kinematic Analysis of the Human Body During Sit-to-Stand in Healthy Young Adults
,”
Medicine
,
100
(
22
), p.
e26208
.
58.
Kamnik
,
R.
,
Bajd
,
T.
,
Williamson
,
J.
, and
Murray-Smith
,
R.
,
2005
, “
Rehabilitation Robot Cell for Multimodal Standing-Up Motion Augmentation
,”
59.
Carr
,
J. H.
,
1992
, “
Balancing the Centre of Body Mass During Standing Up
,”
Physiother. Theor. Pract.
,
8
(
3
), pp.
159
164
.
60.
Roberts
,
S.
,
1875
, “
On Three-Bar Motion in Plane Space
,”
Proc. Lond. Math. Soc.
,
1
(
1
), pp.
14
23
.
61.
Roth
,
B.
,
1965
, “
On the Multiple Generation of Coupler-Curves
,”
ASME J. Eng. Ind.
,
87
(
2
), pp.
177
183
.
62.
Uicker
,
J. J.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
,
2011
,
Theory of Machines and Mechanisms
, 4th ed.,
Oxford University Press
,
New York
.
63.
van der Maaten
,
L.
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using T-SNE
,”
J. Mach. Learn. Res.
,
9
(
86
), pp.
2579
2605
.
64.
Parrish
,
B. E.
,
Michael McCarthy
,
J.
, and
Eppstein
,
D.
,
2015
, “
Automated Generation of Linkage Loop Equations for Planar One Degree-of-Freedom Linkages, Demonstrated Up to 8-Bar
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011006
.
You do not currently have access to this content.