Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article focuses on the design procedures of Alizade's direct and Gezgin's inverse structural synthesis methodologies for platform type manipulators. These task-based synthesis procedures include versatile methodologies for any designer to generate various platform-type manipulators with respect to given constraints via simple universal mobility formulation. However, they rely on the manual generation of mobility-independent coarse topological structures, where it is nearly impossible to generate all possible results. In light of this, the current study introduces a unique connection-based adjacency matrix (CAM) for topology representation, in which legs connected to the fixed ground and platform connections (hinges and branches) are treated separately. The main objective of CAM is to ensure an efficient transition from manual topology generation to automated methods by providing compatibility with software algorithms to describe topologies. Throughout the article, CAM-based automated topology generation algorithm that reveals all possible unique coarse topologies with respect to given design constraints is also presented along with examples. Introduced algorithm both allows investigation of isomorphism and eliminates necessity of inversion.

References

1.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
.
2.
Chebychev
,
P. L.
,
1854
, “
Théorie des Mécanismes Connus Sous le nom de Parallélogrammes
,”
Mém. Acad. Sci. Pétersb
,
7
, pp.
539
568
.
3.
Sylvester
,
J. J.
,
1875
, “
On Recent Discoveries in Mechanical Conversion of Motion
,”
Van Nostrand’s Eclectic Eng. Mag. (1869–1879)
,
12
(
76
), p.
313
.
4.
Grübler
,
M.
,
1884
, “Allgemeine Eigenschaften der zwangläufigen ebenen kinematischen Ketten. L. Simion.”
5.
Somov
,
P. I.
,
1887
, “
On the Degree of Freedom of Motion of Kinematic Chains
,”
J. Phys. Chem. Soc. Russia
,
19
(
9
), pp.
443
477
.
6.
Gokhman
,
K. I
.,
1889
. “Equation for Mobility Definition and Solution of Mechanism Classification.”
7.
Dobrovolski
,
V. V.
,
1949
, “
Dynamic Analysis of Statically Constraint Mechanisms
,”
Akad. Nauk. SSSR, Trudy Sem. Teorii Masini Mekhanizmov
,
30
(
8
).
8.
Dobrovolski
,
V. V.
,
1951
,
Theory of Mechanisms
,
Moscow
. (in Russian).
9.
Boden
,
H.
,
1962
, “
Zum Zwanglauf Genuscht Raümlichebener Getriebe
,”
Maschinenbautechnic
,
11
, pp.
612
615
.
10.
Manolescu
,
N. I.
,
1968
, “
For a United Point of View in the Study of the Structural Analysis of Kinematic Chains and Mechanisms
,”
J. Mech.
,
3
(
3
), pp.
149
169
.
11.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford
.
12.
Angeles
,
J.
, and
Gosselin
,
C.
,
1988
, “
Determination du Degre de Liberte des Chaines Cinematique
,”
Trans. Can. Soc. Mech. Eng.
,
12
(
4
), pp.
219
226
.
13.
Bagci
,
C.
,
1971
, “
Degrees of Freedom of Motion in Mechanisms
,”
ASME. J. Eng. Ind
,
93
(
1
), pp.
140
148
.
14.
Freudenstein
,
F.
, and
Alizade
,
R.
,
1975
, “
On the Degree of Freedom of Mechanisms With Variable General Constraint
,”
Proceedings Fourth World Congress on the Theory of Machines and Mechanisms
,
Newcastle upon Tyne, UK
, pp.
51
56
.
15.
Gronowicz
,
A.
,
1981
, “
Identifizierungsmethode der Zwanglaufbedingungen von Kinematischen Ketten
,”
Mech. Mach. Theory
,
16
(
2
), pp.
127
135
.
16.
Agrawal
,
V. P.
, and
Rao
,
J. S.
,
1987
, “
Fractionated Freedom Kinematic Chains and Mechanisms
,”
Mech. Mach. Theory
,
22
(
2
), pp.
125
130
.
17.
Agrawal
,
V. P.
, and
Rao
,
J. S.
,
1987
, “
Structural Classification of Kinematic Chains and Mechanisms
,”
Mech. Mach. Theory
,
22
(
5
), pp.
489
496
.
18.
Tsai
,
L. W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons
,
New York
.
19.
Mccarthy
,
J. M.
,
2000
, “
Geometric Design of Linkages
,”
Trans. ASME-R-J. Mech. Des.
,
122
(
4
), p.
583
.
20.
Morlin
,
F. V.
,
Carboni
,
A. P.
, and
Martins
,
D.
,
2023
, “
Synthesis of Assur Groups via Group and Matroid Theory
,”
Mech. Mach. Theory
,
184
, p.
105279
.
21.
Manolescu
,
N. I.
,
1973
, “
A Method Based on Baranov Trusses, and Using Graph Theory to Find the Set of Planar Jointed Kinematic Chains and Mechanisms
,”
Mech. Mach. Theory
,
8
(
1
), pp.
3
22
.
22.
Alizade
,
R.
, and
Bayram
,
Ç
,
2004
, “
Structural Synthesis of Parallel Manipulators
,”
Mech. Mach. Theory
,
39
(
8
), pp.
857
870
.
23.
Alizade
,
R. I.
,
1988
, “
On Degree of Freedom of Kinematic Chain. Azerbaijan Polytech: Automation Design of Mechanisms
,”
Manip. Robot.
, pp.
3
14
.
24.
Alizade
,
R.
,
Bayram
,
C.
, and
Gezgin
,
E.
,
2007
, “
Structural Synthesis of Serial Platform Manipulators
,”
Mech. Mach. Theory
,
42
(
5
), pp.
580
599
.
25.
Alizade
,
R.
,
Can
,
F. C.
, and
Gezgin
,
E.
,
2008
, “
Structural Synthesis of Euclidean Platform Robot Manipulators With Variable General Constraints
,”
Mech. Mach. Theory
,
43
(
11
), pp.
1431
1449
.
26.
Alizade
,
R.
,
Selvi
,
O.
, and
Gezgin
,
E.
,
2010
, “
Structural Design of Parallel Manipulators With General Constraint One
,”
Mech. Mach. Theory
,
45
(
1
), pp.
1
14
.
27.
Alizade
,
R.
,
Soltanov
,
S.
, and
Hamidov
,
A.
,
2021
, “
Structural Synthesis of Lower-Class Robot Manipulators With General Constraint One
,”
Robotics
,
10
(
1
), p.
14
.
28.
Gezgin
,
E.
,
2019
, “
Structural Synthesis of Parallel Manipulators Based on a Different Approach
,”
Dokuz Eylül Üniv. Mühendis. Fak. Fen Mühendis. Derg.
,
21
(
61
), pp.
225
234
.
29.
Yang
,
W.
,
Ding
,
H.
, and
Kecskeméthy
,
A.
,
2022
, “
Structural Synthesis Towards Intelligent Design of Plane Mechanisms: Current Status and Future Research Trend
,”
Mech. Mach. Theory
,
171
, p.
104715
.
30.
Yan
,
H. S.
, and
Chiu
,
Y. T.
,
2015
, “
On the Number Synthesis of Kinematic Chains
,”
Mech. Mach. Theory
,
89
, pp.
128
144
.
31.
Crossley
,
F. E.
,
1964
, “
A Contribution to Gruebler’s Theory in the Number Synthesis of Plane Mechanisms
,”
ASME J. Eng. Ind
,
86
(
1
), pp.
1
5
.
32.
Davies
,
T. H.
, and
Crossley
,
F. E.
,
1966
, “
Structural Analysis of Plane Linkages by Franke’s Condensed Notation
,”
J. Mech.
,
1
(
2
), pp.
171
183
.
33.
Soni
,
A. H.
,
1971
, “
Structural Analysis of Two General Constraint Kinematic Chains and Their Practical Application
,”
ASME J. Eng. Ind.
,
93
(
1
), pp.
231
238
.
34.
Dobrjanskyj
,
L.
, and
Freudenstein
,
F.
,
1967
, “
Some Applications of Graph Theory to the Structural Analysis of Mechanisms
,”
ASME J. Eng. Ind.
,
89
(
1
), pp.
153
158
.
35.
Mayourian
,
M.
, and
Freudenstein
,
F.
,
1984
, “
The Development of an Atlas of the Kinematic Structures of Mechanisms
,”
ASME J. Mech. Trans. Autom. Des.
,
106
(
4
), pp.
458
461
.
36.
Lee
,
H. J.
, and
Yoon
,
Y. S.
,
1994
, “
Automatic Method for Enumeration of Complete Set of Kinematic Chains
,”
JSME Int. J. Ser. C, Dyn. Control Robot. Des. Manuf.
,
37
(
4
), pp.
812
818
.
37.
Woo
,
L. S.
,
1967
, “
Type Synthesis of Plane Linkages
,”
J. Eng. Ind.
,
89
(
1
), pp.
159
170
.
38.
Manolescu
,
N. I.
,
1979
, “
A Unified Method for the Formation of All Planar Jointed Kinematic Chains and Baranov Trusses
,”
Environ. Plann. B: Plann. Des.
,
6
(
4
), pp.
447
454
.
39.
Manolescu
,
N. I.
,
1979
, “
The Unitary Method of Structural Synthesis of All the Planar Jointed Kinematic Chains (KCmjsl)
,”
Proceedings of the 5th World Congress on TMM
,
Montreal, Canada
, Vol. 1, pp.
514
518
.
40.
Mruthyunjaya
,
T. S.
,
Balasubramanian
,
H. R.
, and
Vijayananda
,
K.
,
1992
, “
Computerized Structural Synthesis and Analysis of Eleven-Link, Twi-Freedom Kinematic Chains
,”
Rev. Roum. Sci. Tech. Sér. Mécanique Appl.
,
37
(
1
), pp.
91
105
.
41.
Mruthyunjaya
,
T. S.
, and
Balasubramanian
,
H. R.
,
1987
, “
In Quest of a Reliable and Efficient Computational Test for Detection of Isomorphism in Kinematic Chains
,”
Mech. Mach. Theory
,
22
(
2
), pp.
131
139
.
42.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
43.
Raicu
,
A.
,
1974
, “
Matrices Associated With Kinematic Chains With From 3 to 5 Members
,”
Mech. Mach. Theory
,
9
(
1
), pp.
123
129
.
44.
Tuttle
,
E. R.
,
Peterson
,
S. W.
, and
Titus
,
J. E.
,
1989
, “
Further Applications of Group Theory to the Enumeration and Structural Analysis of Basic Kinematic Chains
,”
J. Mech. Trans. Autom.
,
111
(
4
), pp.
494
497
.
45.
Tuttle
,
E. R.
,
Peterson
,
S. W.
, and
Titus
,
J. E.
,
1989
, “
Enumeration of Basic Kinematic Chains Using the Theory of Finite Groups
,”
J. Mech. Trans. Autom.
,
111
(
4
), pp.
498
503
.
46.
Butcher
,
E. A.
, and
Hartman
,
C.
,
2002
, “
Enumeration and Classification of 12-Bar Planar Simple-Jointed Kinematic Chains Using a Hierarchical Approach
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
, Vol. 36533, pp.
471
480
.
47.
Butcher
,
E. A.
, and
Hartman
,
C.
,
2005
, “
Efficient Enumeration and Hierarchical Classification of Planar Simple-Jointed Kinematic Chains: Application to 12- and 14-Bar Single Degree-of-Freedom Chains
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1030
1050
.
48.
Earl
,
C. F.
, and
Rooney
,
J.
,
1983
, “
The Generation of Kinematic Structures for Planar Kinematic Chains
,”
Proceedings of the 6th World Congress on Theory of Machines and Mechanisms
,
New Delhi, India
, pp.
133
136
.
49.
Rao
,
A. C.
, and
Deshmukh
,
P. B.
,
2001
, “
Computer Aided Structural Synthesis of Planar Kinematic Chains Obviating the Test for Isomorphism
,”
Mech. Mach. Theory
,
36
(
4
), pp.
489
506
.
50.
Tsai
,
L. W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton, FL
.
51.
Davies
,
T.
,
1968
, “
An Extension of Manolescu’s Classification of Planar Kinematic Chains and Mechanisms of Mobility M ⩾ 1, Using Graph Theory
,”
J. Mech.
,
3
(
2
), pp.
87
100
.
52.
Dobrjanskyj
,
L.
,
1966
,
Application of Graph Theory to the Structural Classification of Mechanisms
,
Columbia University
,
New York
.
53.
Buchsbaum
,
F.
,
1967
,
Structural Classification and Type Synthesis of Mechanisms With Multiple Elements
,
Columbia University
,
New York
.
54.
Freudenstein
,
F.
,
1967
, “
The Basic Concepts of Polya’s Theory of Enumeration, With Application to the Structural Classification of Mechanisms
,”
J. Mech.
,
2
(
3
), pp.
275
290
.
55.
Pucheta
,
M.
, and
Cardona
,
A.
,
2007
, “
An Automated Method for Type Synthesis of Planar Linkages Based on a Constrained Subgraph Isomorphism Detection
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
233
258
.
56.
Romaniak
,
K.
,
2016
, “
Identifying the Isomorphism of Kinematic Chains
,”
Acta Mech. Autom.
,
10
(
3
), pp.
195
200
.
57.
Sozański
,
T.
,
1980
, “
Enumeration of Weak Isomorphism Classes of Signed Graphs
,”
J. Graph Theory
,
4
(
2
), pp.
127
144
.
58.
Harary
,
F.
,
Palmer
,
E. M.
,
Robinson
,
R. W.
, and
Schwenk
,
A. J.
,
1977
, “
Enumeration of Graphs With Signed Points and Lines
,”
J. Graph Theory
,
1
(
4
), pp.
295
308
.
59.
Babai
,
L.
, and
Luks
,
E. M.
,
1983
, “
Canonical Labeling of Graphs
,”
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing
, pp.
171
183
.
60.
Hou
,
A.
,
Zhong
,
Q.
,
Chen
,
Y.
, and
Hao
,
Z.
,
2014
, “
A Practical Graph Isomorphism Algorithm With Vertex Canonical Labeling
,”
J. Comput.
,
9
(
10
), pp.
2467
2474
.
61.
Stueckle
,
S.
,
1988
, “
On Natural Isomorphisms of Cycle Permutation Graphs
,”
Graphs Combin.
,
4
(
1
), pp.
75
85
.
62.
Colbourn
,
C. J.
,
1981
, “
On Testing Isomorphism of Permutation Graphs
,”
Networks
,
11
(
1
), pp.
13
21
.
63.
Luks
,
E. M.
,
1986
, “
Parallel Algorithms for Permutation Groups and Graph Isomorphism
,”
27th Annual Symposium on Foundations of Computer Science (Sfcs 1986)
,
Toronto, ON, Canada
, IEEE, pp.
292
302
.
64.
Babai
,
L.
,
2016
, “
Graph Isomorphism in Quasipolynomial Time
,”
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing
, pp.
684
697
.
65.
Mustafa
,
J.
,
Hasan
,
A.
, and
Khan
,
R. A.
,
2020
, “
An Application of Modified Path Matrix Approach for Detection of Isomorphism Among Epicyclic Gear Trains
,”
J. Inst. Eng. (India): C
,
101
(
3
), pp.
463
472
.
66.
Mustafa
,
J.
, and
Hasan
,
A.
,
2021
, “
Comparative Study Between Modified Path Matrix Approach, Modified Gradient Method and Bocher’s Technique to Detect Isomorphism in EGTs
,”
Mater. Today: Proc.
,
47
(
5
), pp.
3907
3910
.
67.
Mowshowitz
,
A.
,
1972
, “
The Characteristic Polynomial of a Graph
,”
J. Comb. Theory B
,
12
(
2
), pp.
177
193
.
68.
Reddy
,
I. R.
,
Reddy
,
C. V. K.
,
Rao
,
Y. V. D.
, and
Shekar
,
A. C.
,
2020
, “
Comparison of Tests for Isomorphism in Planetary Gear Trains
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
981
(
4
), p.
042023
.
69.
Yadav
,
J. N.
,
Pratap
,
C. R.
, and
Agrawal
,
V. P.
,
1995
, “
Detection of Isomorphism Among Kinematic Chains Using the Distance Concept
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
607
661
.
70.
Sarkar
,
S. C.
, and
Khare
,
A. K.
,
2004
, “
Detecting the Effect of Uncertainty and Isomorphism in 10 Bar Kinematic Chains Using All Possible Paths for Motion Transmission
,”
Mech. Mach. Theory
,
39
(
8
), pp.
893
900
.
71.
Sun
,
W.
,
Kong
,
J.
, and
Sun
,
L.
,
2017
, “
The Improved Hamming Number Method to Detect Isomorphism for Kinematic Chain With Multiple Joints
,”
J. Adv. Mech. Des. Syst. Manuf.
,
11
(
5
), p.
JAMDSM0061
.
72.
Rao
,
A. C.
,
1997
, “
Hamming Number Technique—I. Further Applications
,”
Mech. Mach. Theory
,
32
(
4
), pp.
477
488
.
73.
Shin
,
J. K.
, and
Krishnamurty
,
S.
,
1994
, “
Development of a Standard Code for Colored Graphs and Its Application to Kinematic Chains
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
189
196
.
74.
Shin
,
J. K.
, and
Krishnamurty
,
S.
,
1993
, “
Standard Code Technique in the Enumeration of Epicyclic Gear Trains
,”
Mech. Mach. Theory
,
28
(
3
), pp.
347
355
.
75.
He
,
P. R.
,
Zhang
,
W. J.
, and
Li
,
Q.
,
2002
, “
Eigenvalue and Eigenvector Information of Graphs and Their Validity in Detection of Graph Isomorphism
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
, Vol. 36533, pp.
421
428
.
76.
Cao
,
D.
, and
Yuan
,
H.
,
1993
, “
Graphs Characterized by the Second Eigenvalue
,”
J. Graph Theory
,
17
(
3
), pp.
325
331
.
77.
Kong
,
F. G.
,
Li
,
Q.
, and
Zhang
,
W. J.
,
1999
, “
An Artificial Neural Network Approach to Mechanism Kinematic Chain Isomorphism Identification
,”
Mech. Mach. Theory
,
34
(
2
), pp.
271
283
.
78.
Bouritsas
,
G.
,
Frasca
,
F.
,
Zafeiriou
,
S.
, and
Bronstein
,
M. M.
,
2022
, “
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
45
(
1
), pp.
657
668
.
79.
Dargar
,
A.
,
Hasan
,
A.
, and
Khan
,
R. A.
,
2009
, “
Identification of Isomorphism Aamong Kinematic Chains and Inversions Using Link Adjacency Values
,”
Int. J. Mech. Mater. Eng.
,
4
(
3
), pp.
309
315
.
80.
Dargar
,
A.
,
Khan
,
R. A.
, and
Hasan
,
A.
,
2010
, “
Application of Link Adjacency Values to Detect Isomorphism Among Kinematic Chains
,”
Int. J. Mech. Mater. Des.
,
6
(
2
), pp.
157
162
.
81.
Yang
,
W.
, and
Ding
,
H.
,
2018
, “
The Perimeter Loop-Based Method for the Automatic Isomorphism Detection in Planetary Gear Trains
,”
ASME J. Mech. Des.
,
140
(
12
), p.
123302
.
82.
Prasad Raju Pathapati
,
V. V. N. R.
, and
Rao
,
A. C.
,
2002
, “
A new Technique Based on Loops to Investigate Displacement Isomorphism in Planetary Gear Trains
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
662
675
.
83.
Sun
,
L.
,
Liu
,
X.
,
Liu
,
X.
,
Hong
,
X.
,
Pei
,
H.
, and
Zhang
,
D.
,
2022
, “
An Isomorphism Identification Method of Kinematic Chain Based on Optimal Arrangement and Comparison of Branch-Chain Matrix Derived from Dendrogram Graph
,”
Adv. Mech. Eng.
,
14
(
12
), p.
16878132221131193
.
84.
Huang
,
Z.
,
Ding
,
H. F.
, and
Cao
,
Y.
,
2005
, “
The Novel Characteristic Representations of Kinematic Chains and Their Applications
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
, Vol. 47446, pp.
201
210
.
85.
Chang
,
Z.
,
Zhang
,
C.
,
Yang
,
Y.
, and
Wang
,
Y.
,
2002
, “
A new Method to Mechanism Kinematic Chain Isomorphism Identification
,”
Mech. Mach. Theory
,
37
(
4
), pp.
411
417
.
86.
Cubillo
,
J. P.
, and
Wan
,
J.
,
2005
, “
Comments on Mechanism Kinematic Chain Isomorphism Identification Using Adjacent Matrices
,”
Mech. Mach. Theory
,
40
(
2
), pp.
131
139
.
87.
Rizvi
,
S. S. H.
,
Hasan
,
A.
, and
Khan
,
R. A.
,
2016
, “
An Efficient Algorithm for Distinct Inversions and Isomorphism Detection in Kinematic Chains
,”
Perspect. Sci.
,
8
, pp.
251
253
.
88.
Dargar
,
A.
,
Hasan
,
A.
, and
Khan
,
R. A.
,
2013
, “
Some New Codes for Isomorphism Identification Among Kinematic Chains and Their Inversions
,”
Int. J. Mech. Robot. Syst.
,
1
(
1
), pp.
49
67
.
89.
Sun
,
L.
,
Cui
,
R.
,
Ye
,
Z.
,
Zhou
,
Y.
,
Xu
,
Y.
, and
Wu
,
C.
,
2020
, “
Similarity Recognition and Isomorphism Identification of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
145
, p.
103678
.
90.
Ding
,
H.
, and
Huang
,
Z.
,
2007
, “
The Establishment of the Canonical Perimeter Topological Graph of Kinematic Chains and Isomorphism Identification
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
915
923
.
91.
Ding
,
H.
, and
Huang
,
Z.
,
2009
, “
Isomorphism Identification of Graphs: Especially for the Graphs of Kinematic Chains
,”
Mech. Mach. Theory
,
44
(
1
), pp.
122
139
.
92.
Ping
,
Y.
,
NingBo
,
L.
,
Bin
,
Y.
,
JianNing
,
D.
, and
Jichang
,
Y.
,
2007
, “
A Mixed Isomorphism Approach for Kinematic Structure Enumeration Graphs Based on Intelligent Design and Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
31
(
9–10
), pp.
841
845
.
93.
Shukla
,
A.
, and
Sanyal
,
S.
,
2020
, “
Gradient Method for Identification of Isomorphism of Planar Kinematic Chains
,”
Aust. J. Mech. Eng.
,
18
(
1
), pp.
45
62
.
94.
Tuttle
,
E. R.
,
1996
, “
Generation of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
31
(
6
), pp.
729
748
.
95.
Helal
,
M.
,
Hu
,
J. W.
, and
Eleashy
,
H.
,
2021
, “
A New Algorithm for Unique Representation and Isomorphism Detection of Planar Kinematic Chains With Simple and Multiple Joints
,”
Processes
,
9
(
4
), p.
601
.
96.
Yu
,
L.
,
Wang
,
H.
, and
Zhou
,
S.
,
2022
, “
Graph Isomorphism Identification Based on Link-Assortment Adjacency Matrix
,”
Sādhanā
,
47
(
3
), p.
151
.
97.
Rai
,
R. K.
, and
Punjabi
,
S.
,
2018
, “
Kinematic Chains Isomorphism Identification Using Link Connectivity Number and Entropy Neglecting Tolerance and Clearance
,”
Mech. Mach. Theory
,
123
, pp.
40
65
.
98.
Sun
,
L.
,
Ye
,
Z.
,
Lu
,
F.
,
Cui
,
R.
, and
Wu
,
C.
,
2021
, “
Similar Vertices and Isomorphism Detection for Planar Kinematic Chains Based on Ameliorated Multi-Order Adjacent Vertex Assignment Sequence
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
15
.
99.
Rizvi
,
S. S. H.
,
Hasan
,
A.
, and
Khan
,
R. A.
,
2016
, “
A New Method for Distinct Inversions and Isomorphism Detection in Kinematic Chains
,”
Int. J. Mech. Robot. Syst.
,
3
(
1
), pp.
48
59
.
100.
Tang
,
C. S.
, and
Liu
,
T.
,
1993
, “
The Degree Code—A New Mechanism Identifier
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
627
630
.
101.
Rao
,
A. C.
, and
Raju
,
D. V.
,
1991
, “
Application of the Hamming Number Technique to Detect Isomorphism Among Kinematic Chains and Inversions
,”
ASME Mech. Mach. Theory
,
26
(
1
), pp.
55
75
.
102.
Ambekar
,
A. G.
, and
Agrawal
,
V. P.
,
1987
, “
Canonical Numbering of Kinematic Chains and Isomorphism Problem: Min Code
,”
Mech. Mach. Theory
,
22
(
5
), pp.
453
461
.
103.
Ding
,
H.
,
Huang
,
P.
,
Yang
,
W.
, and
Kecskeméthy
,
A.
,
2016
, “
Automatic Generation of the Complete set of Planar Kinematic Chains With Up to Six Independent Loops and Up to 19 Links
,”
Mech. Mach. Theory
,
96
, pp.
75
93
.
104.
Sun
,
W.
,
Kong
,
J.
, and
Sun
,
L.
,
2020
, “
A Novel Graphical Joint-Joint Adjacent Matrix Method for the Automatic Sketching of Kinematic Chains With Multiple Joints
,”
Mech. Mach. Theory
,
150
, p.
103847
.
105.
Mauskar
,
S.
, and
Krishnamurty
,
S.
,
1996
, “
A Loop Configuration Approach to Automatic Sketching of Mechanisms
,”
Mech. Mach. Theory
,
31
(
4
), pp.
423
437
.
106.
Olson
,
D. G.
,
Thompson
,
T. R.
,
Riley
,
D. R.
, and
Erdman
,
A. G.
,
1985
, “
An Algorithm for Automatic Sketching of Planar Kinematic Chains
,”
ASME J. Mech. Trans. Autom.
,
107
(
1
), pp.
106
111
.
107.
Chieng
,
W. H.
, and
Hoeltzel
,
D. A.
,
1990
, “
A Combinatorial Approach for the Automatic Sketching of Planar Kinematic Chains and Epicyclic Gear Trains
,”
ASME J. Mech. Des.
,
112
(
1
), pp.
6
15
.
108.
Belfiore
,
N. P.
, and
Pennestri
,
E.
,
1994
, “
Automatic Sketching of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
29
(
1
), pp.
177
193
.
109.
Chiu
,
Y. T.
, and
Yan
,
H. S.
,
2015
, “
An Algorithm for the Automatic Sketching of Generalized Kinematic Chains
,”
14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
117
122
.
110.
Pucheta
,
M. A.
,
Ulrich
,
N. E.
, and
Cardona
,
A.
,
2013
, “
Automated Sketching of Non-Fractionated Kinematic Chains
,”
Mech. Mach. Theory
,
68
, pp.
67
82
.
111.
Bedi
,
G. S.
, and
Sanyal
,
S.
,
2013
, “
Loop Based Algorithm for Automatic Sketching of Planar Kinematic Chains
,”
Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms
,
India
, pp.
452
456
.
112.
Yang
,
W.
,
Ding
,
H.
,
He
,
Y.
, and
Wu
,
M.
,
2017
, “
Studying the Optimal Layout of Topological Graphs to Facilitate the Automatic Sketching of Kinematic Chains
,”
ASME J. Mech. Des.
,
139
(
8
), p.
082301
.
113.
Yang
,
W.
,
Ding
,
H.
, and
Kecskeméthy
,
A.
,
2018
, “
A New Method for the Automatic Sketching of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
121
, pp.
755
768
.
114.
Yan
,
H. S.
, and
Hwang
,
Y. W.
,
1990
, “
Number Synthesis of Kinematic Chains Based on Permutation Groups
,”
Math. Comput. Model.
,
13
(
8
), pp.
29
42
.
115.
Huang
,
P.
,
Ding
,
H.
,
Yang
,
W.
, and
Xu
,
G.
,
2021
, “
Connectivity Calculation-Based Automatic Synthesis of Planar Multi-Loop Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
041004
.
116.
Huang
,
P.
,
Ding
,
H.
,
Yang
,
W.
, and
Kecskeméthy
,
A.
,
2017
, “
An Automatic Method for the Connectivity Calculation in Planar Closed Kinematic Chains
,”
Mech. Mach. Theory
,
109
, pp.
195
219
.
117.
Sun
,
L.
,
Cui
,
R.
,
Yang
,
W.
,
Ye
,
Z.
,
Zhou
,
Y.
, and
Wu
,
C.
,
2021
, “
Automatic Synthesis of the Complete set of Contracted Graphs for Planar Kinematic Chains With Up to Seven Independent Loops
,”
Mech. Mach. Theory
,
156
, p.
104144
.
118.
Sun
,
L.
,
Ye
,
Z.
,
Cui
,
R.
,
Huang
,
X.
, and
Wu
,
C.
,
2022
, “
Eliminating Isomorphism Identification Method for Synthesizing Nonfractionated Kinematic Chains Based on Graph Similarity
,”
Mech. Mach. Theory
,
167
, p.
104500
.
119.
Hsieh
,
C. F.
,
Hwang
,
Y. W.
, and
Yan
,
H. S.
,
2008
, “
Generation and Sketching of Generalized Kinematic Chains
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Brooklyn, NY
, Vol. 43260, pp.
1337
1345
.
120.
Yazıcı
,
M. V.
,
Koçak
,
M.
,
Uslu
,
T.
, and
Gezgin
,
E.
,
2024
, “
CAM Representations of Generated Unique Manipulator Topologies for Selected Configurations
”,
Mendeley Data
,
2
.
121.
Tian
,
C.
, and
Zhang
,
D.
,
2020
, “
A New Family of Generalized Parallel Manipulators With Configurable Moving Platforms
,”
Mech. Mach. Theory
,
153
, p.
103997
.
122.
Huang
,
G.
,
Guo
,
S.
,
Zhang
,
D.
,
Qu
,
H.
, and
Tang
,
H.
,
2018
, “
Kinematic Analysis and Multi-Objective Optimization of a New Reconfigurable Parallel Mechanism With High Stiffness
,”
Robotica
,
36
(
2
), pp.
187
203
.
123.
Zhang
,
X.
,
Nie
,
R.
,
Chen
,
Y.
, and
He
,
B.
,
2021
, “
Deployable Structures: Structural Design and Static/Dynamic Analysis
,”
J. Elast.
,
146
(
2
), pp.
199
235
.
124.
Barozzi
,
M.
,
Lienhard
,
J.
,
Zanelli
,
A.
, and
Monticelli
,
C.
,
2016
, “
The Sustainability of Adaptive Envelopes: Developments of Kinetic Architecture
,”
Procedia Eng.
,
155
, pp.
275
284
.
125.
Hosseini
,
S. M.
,
Mohammadi
,
M.
,
Rosemann
,
A.
,
Schröder
,
T.
, and
Lichtenberg
,
J.
,
2019
, “
A Morphological Approach for Kinetic Façade Design Process to Improve Visual and Thermal Comfort
,”
Build. Environ.
,
153
, pp.
186
204
.
126.
Gezgin
,
A. G.
, and
Korkmaz
,
K.
,
2017
, “
A New Approach to the Generation of Retractable Plate Structures Based on One-Uniform Tessellations
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041015
.
You do not currently have access to this content.