Abstract

In the engineering design process, design fixation significantly constrains the diversity of design solutions. Numerous studies have aimed to mitigate design fixation, yet determining its occurrence in real-time remains a challenge. This research seeks to systematically identify the emergence of fixation through the behavior of novice designers in the early stages of the design process. We conducted a laboratory study, involving 50 novice designers possessing engineering drafting skills. Their design processes were monitored via video cameras, with both their design solutions and physical behaviors recorded. Subsequently, expert evaluators categorized design solutions into three types: Fixation, Low-quality, and Innovative. We manually recorded the names and durations of 31 different physical behaviors observed in the videos, which were then coded and filtered. Meanwhile, we propose a filtering and calculation method for the behavior in the design process. From this, four fixation behaviors were identified using variance analysis (ANOVA): Touch Mouth (TM), Touch Head (TH), Rest Head in Hands (RH), and Hold Face in Hands (HF). Our findings suggest that continuous interaction between the hand and head, mouth, or face can be indicative of a fixation state. Finally, we developed a Behavior-Fixation model based on the Support Vector Machine (SVM) for stage fixation judgment tasks, achieving an accuracy rate of 85.6%. This machine-learning model outperforms manual assessment in speed and accuracy. Overall, our study offers promising prospects for assisting designers in recognizing and avoiding design fixation. These findings, coupled with our proposed computational techniques, provide valuable insights for the development of automated and intelligent design innovation systems.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Stempfle
,
J.
,
2011
, “
Overcoming Organizational Fixation: Creating and Sustaining an Innovation Culture
,”
J. Creat. Behav.
,
45
(
2
), pp.
116
129
.
2.
Moghaddam
,
M.
,
Marion
,
T.
,
Holtta-Otto
,
K.
,
Fu
,
K.
,
Olechowski
,
A.
, and
McComb
,
C.
,
2023
, “
Emerging Technologies and Methods for Early-Stage Product Design and Development
,”
ASME J. Mech. Des.
,
145
(
4
), p.
040301
.
3.
Jansson
,
D. G.
, and
Smith
,
S. M.
,
1991
, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
.
4.
Jia
,
M.
,
Jiang
,
S.
,
Hu
,
J.
, and
Qi
,
J.
,
2023
, “
Toward Understanding Sources and Influences of Design Fixation: A Focus on Example Stimuli and Background of Novice Designers
,”
ASME J. Mech. Des.
,
145
(
5
), p.
051402
.
5.
Cao
,
J.
,
Zhao
,
W.
,
Guo
,
X.
, and
Wu
,
T.
,
2021
, “
Utilizing EEG to Explore the Mental States Involved in the Occurrence of Different Levels Design Fixation
,”
Proceedings of the International Design Engineering Technical Conferences and Computers
,
Virtual
,
Aug. 17–19
, p. V002T02A054.
6.
Neroni
,
M. A.
,
Vasconcelos
,
L. A.
, and
Crilly
,
N.
,
2017
, “
Computer-Based ‘Mental Set’ Tasks: An Alternative Approach to Studying Design Fixation
,”
ASME J. Mech. Des.
,
139
(
7
), p.
071102
.
7.
Goucher-Lambert
,
K.
,
Gyory
,
J. T.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2020
, “
Adaptive Inspirational Design Stimuli: Using Design Output to Computationally Search for Stimuli That Impact Concept Generation
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091401
.
8.
Fu
,
K. K.
,
Sylcott
,
B.
, and
Das
,
K.
,
2019
, “
Using fMRI to Deepen Our Understanding of Design Fixation
,”
Des. Sci.
,
5
, p.
e22
.
9.
Panksepp
,
J.
,
2004
,
Affective Neuroscience: The Foundations of Human and Animal Emotions
,
Oxford University Press
,
Oxford, UK
.
10.
Birdwhistell
,
R. L.
,
2010
,
Kinesics and Context: Essays on Body Motion Communication
,
University of Pennsylvania Press
,
Philadelphia, PA
.
11.
Edmondson
,
A. C.
, and
Nembhard
,
I. M.
,
2009
, “
Product Development and Learning in Project Teams: The Challenges Are the Benefits
,”
J. Prod. Innov. Manag.
,
26
(
2
), pp.
123
138
.
12.
Craig
,
S.
,
Graesser
,
A.
,
Sullins
,
J.
, and
Gholson
,
B.
,
2004
, “
Affect and Learning: An Exploratory Look Into the Role of Affect in Learning With AutoTutor
,”
J. Educ. Media
,
29
(
3
), pp.
241
250
.
13.
Kapoor
,
A.
, and
Picard
,
R. W.
,
2005
, “
Multimodal Affect Recognition in Learning Environments
,”
Proceedings of the 13th Annual ACM International Conference on Multimedia
,
Singapore
,
Nov. 6–11
, pp.
677
682
.
14.
Youmans
,
R. J.
,
2011
, “
The Effects of Physical Prototyping and Group Work on the Reduction of Design Fixation
,”
Des. Stud.
,
32
(
2
), pp.
115
138
.
15.
Wise
,
G.
,
1992
, “Inventions and Corporations in the Maturing Electrical Industry,”
Inventive minds Creativity in Technology
, pp.
291
310
.
16.
Amabile
,
T. M.
,
2018
,
Creativity in Context: Update to the Social Psychology of Creativity
,
Routledge
,
London
.
17.
Scott
,
G.
,
Leritz
,
L. E.
, and
Mumford
,
M. D.
,
2004
, “
The Effectiveness of Creativity Training: A Quantitative Review
,”
Creat. Res. J.
,
16
(
4
), pp.
361
388
.
18.
Youmans
,
R. J.
, and
Arciszewski
,
T.
,
2014
, “
Design Fixation: Classifications and Modern Methods of Prevention
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
28
(
2
), pp.
129
137
.
19.
Bargh
,
J. A.
, and
Morsella
,
E.
,
2008
, “
The Unconscious Mind
,”
Perspect. Psychol. Sci.
,
3
(
1
), pp.
73
79
.
20.
Smith
,
S. M.
,
Linsey
,
J. S.
, and
Kerne
,
A.
,
2011
, “
Using Evolved Analogies to Overcome Creative Design Fixation
,”
Proceedings of the Design Creativity 2010
,
Springer London
.
21.
Leahy
,
K.
,
Daly
,
S. R.
,
McKilligan
,
S.
, and
Seifert
,
C. M.
,
2020
, “
Design Fixation From Initial Examples: Provided Versus Self-Generated Ideas
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101402
.
22.
Toh
,
C. A.
, and
Miller
,
S. R.
,
2014
, “
The Impact of Example Modality and Physical Interactions on Design Creativity
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091004
.
23.
Marsh
,
R. L.
, and
Bower
,
G. H.
,
1993
, “
Eliciting Cryptomnesia: Unconscious Plagiarism in a Puzzle Task
,”
J. Exp. Psychol. Learn. Mem. Cogn.
,
19
(
3
), pp.
673
688
.
24.
Marsh
,
R. L.
, and
Landau
,
J. D.
,
1995
, “
Item Availability in Cryptomnesia: Assessing Its Role in Two Paradigms of Unconscious Plagiarism
,”
J. Exp. Psychol. Learn. Mem. Cogn.
,
21
(
6
), pp.
1568
1582
.
25.
Marsh
,
R. L.
,
Ward
,
T. B.
, and
Landau
,
J. D.
,
1999
, “
The Inadvertent Use of Prior Knowledge in a Generative Cognitive Task
,”
Mem. Cognit.
,
27
(
1
), pp.
94
105
.
26.
Bellows
,
B. G.
,
Higgins
,
J. F.
,
Smith
,
M. A.
, and
Youmans
,
R. J.
,
2012
, “
The Effects of Individual Differences in Working Memory Capacity and Design Environment on Design Fixation
,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
56
(
1
), pp.
1977
1981
.
27.
Smith
,
S. M.
,
Ward
,
T. B.
, and
Schumacher
,
J. S.
,
1993
, “
Constraining Effects of Examples in a Creative Generation Task
,”
Mem. Cognit.
,
21
(
6
), pp.
837
845
.
28.
Viswanathan
,
V. K.
,
Esposito
,
N. E.
, and
Linsey
,
J. S.
,
2012
, “
Training Tomorrow's Designers: A Study on the Design Fixation
,”
Proceedings of the 2012 ASEE Annual Conference & Exposition
,
San Antonio, TX
,
June 10–13
, pp.
25
1372
.
29.
Deo
,
S.
,
Blej
,
A.
,
Kirjavainen
,
S.
, and
Hölttä-Otto
,
K.
,
2021
, “
Idea Generation Mechanisms: Comparing the Influence of Classification, Combination, Building on Others, and Stimulation Mechanisms on Ideation Effectiveness
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121403
.
30.
Linsey
,
J. S.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K. L.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041003
.
31.
Brown
,
A. S.
, and
Murphy
,
D. R.
,
1989
, “
Cryptomnesia: Delineating Inadvertent Plagiarism
,”
J. Exp. Psychol.
,
15
(
3
), pp.
432
.
32.
Smith
,
M. A. B.
,
Youmans
,
R. J.
,
Bellows
,
B. G.
, and
Peterson
,
M. S.
,
2013
, “
Shifting the Focus: An Objective Look at Design Fixation
,”
Proceedings of the Design Philosophy, Methods, and Tools: Second International Conference, Held as Part of HCI International 2013
,
Las Vegas, NV
,
July 21–26
, pp.
144
151
.
33.
Collins
,
A. M.
, and
Loftus
,
E. F.
,
1975
, “
A Spreading-Activation Theory of Semantic Processing
,”
Psychol. Rev.
,
82
(
6
), pp.
407
428
.
34.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of ‘Near’ and ‘Far’: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
35.
Purcell
,
A. T.
, and
Gero
,
J. S.
,
1996
, “
Design and Other Types of Fixation
,”
Des. Stud.
,
17
(
4
), pp.
363
383
.
36.
Ball
,
L. J.
,
Evans
,
J. S. B. T.
, and
Dennis
,
I.
,
1994
, “
Cognitive Processes in Engineering Design: A Longitudinal Study
,”
Ergonomics
,
37
(
11
), pp.
1753
1786
.
37.
Krishnakumar
,
S.
,
Lauff
,
C.
,
McComb
,
C.
,
Berdanier
,
C.
, and
Menold
,
J.
,
2021
, “
Novice Designers' Use of Prototypes as Communication Tools
,”
Proc. Des. Soc.
,
1
, pp.
2277
2286
.
38.
Viswanathan
,
V. K.
, and
Linsey
,
J. S.
,
2013
, “
Design Fixation and Its Mitigation: A Study on the Role of Expertise
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051008
.
39.
Duncker
,
K.
, and
Lees
,
L. S.
,
1945
, “
On Problem-Solving
,”
Psychol. Monogr.
,
58
(
5
), pp.
i
113
.
40.
Zhao
,
Y.
,
2012
,
Human Emotion Recognition From Body Language of the Head Using Soft Computing Techniques
,
University of Ottawa
,
Canada
.
41.
Hwang
,
H. C.
, and
Matsumoto
,
D.
,
2021
, “Measuring Emotions in the Face,”
Emotion Measurement
,
Woodhead Publishing
,
Sawston, UK
, pp.
125
144
.
42.
Kendon
,
A.
,
1997
, “
Gesture
,”
Annu. Rev. Anthropol.
,
26
, pp.
109
128
.
43.
Wulvik
,
A.
,
Erichsen
,
J. A. B.
, and
Steinert
,
M.
,
2016
, “
Capturing Body Language in Engineering Design—Tools and Technologies
,”
Proceedings of the NordDesign
,
Trondheim, Norway
,
Aug. 10–12
, pp.
165
174
.
44.
Matsumoto
,
D.
,
Hwang
,
H. C.
, and
Frank
,
M. G.
,
2016
, “The Body: Postures,Gait, Proxemics, and Haptics,”
APA Handbook of Nonverbal Communication
,
American Psychological Association
, pp.
387
400
.
45.
Aviezer
,
H.
,
Trope
,
Y.
, and
Todorov
,
A.
,
2012
, “
Body Cues, Not Facial Expressions, Discriminate Between Intense Positive and Negative Emotions
,”
Science
,
338
(
6111
), pp.
1225
1229
.
46.
Mitra
,
S.
, and
Acharya
,
T.
,
2007
, “
Gesture Recognition: A Survey
,”
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
,
37
(
3
), pp.
311
324
.
47.
Behoora
,
I.
, and
Tucker
,
C. S.
,
2015
, “
Machine Learning Classification of Design Team Members' Body Language Patterns for Real Time Emotional State Detection
,”
Des. Stud.
,
39
, pp.
100
127
.
48.
Cash
,
P.
, and
Maier
,
A.
,
2016
, “
Prototyping With Your Hands: The Many Roles of Gesture in the Communication of Design Concepts
,”
J. Eng. Des.
,
27
(
1–3
), pp.
118
145
.
49.
Wulvik
,
A.
,
Erichsen
,
J.
, and
Steinert
,
M.
,
2016
, “
Capturing Body Language in Engineering Design–Tools and Technologies
,”
DS 85-1: Proceedings of the NordDesign 2016, Volume 1
,
Trondheim, Norway
,
Aug. 10–12
, pp.
165
174
.
50.
Eris
,
O.
,
Martelaro
,
N.
, and
Badke-Schaub
,
P.
,
2014
, “
A Comparative Analysis of Multimodal Communication During Design Sketching in Co-Located and Distributed Environments
,”
Des. Stud.
,
35
(
6
), pp.
559
592
.
51.
Tang
,
J. C.
, and
Leifer
,
L. J.
,
1991
, “
An Observational Methodology for Studying Group Design Activity
,”
Res. Eng. Des.
,
2
(
4
), pp.
209
219
.
52.
Edelman
,
J. A.
,
2011
,
Understanding Radical Breaks: Media and Behavior in Small Teams Engaged in Redesign Scenarios
,
Stanford University
,
Stanford, CA
.
53.
Edelman
,
B.
,
Baxter
,
B.
, and
He
,
B.
,
2014
, “
Discriminating Hand Gesture Motor Imagery Tasks Using Cortical Current Density Estimation
,”
Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Chicago, IL
,
Aug. 26–30
, pp.
1314
1317
.
54.
Jung
,
M. F.
,
2011
,
Engineering Team Performance and Emotion: Affective Interaction Dynamics as Indicators of Design Team Performance
,
Stanford University
,
Stanford, CA
.
55.
Bezawada
,
S.
,
Hu
,
Q.
,
Gray
,
A.
,
Brick
,
T.
, and
Tucker
,
C.
,
2017
, “
Automatic Facial Feature Extraction for Predicting Designers' Comfort With Engineering Equipment During Prototype Creation
,”
ASME J. Mech. Des.
,
139
(
2
), p.
021102
.
56.
Sun
,
L.
,
Xiang
,
W.
,
Chai
,
C.
,
Yang
,
Z.
, and
Zhang
,
K.
,
2014
, “
Designers' Perception During Sketching: An Examination of Creative Segment Theory Using Eye Movements
,”
Des. Stud.
,
35
(
6
), pp.
593
613
.
57.
Crilly
,
N.
, and
Cardoso
,
C.
,
2017
, “
Where Next for Research on Fixation, Inspiration and Creativity in Design?
Des. Stud.
,
50
, pp.
1
38
.
58.
Goldschmidt
,
G.
, and
Weil
,
M.
,
1998
, “
Contents and Structure in Design Reasoning
,”
Des. Issues
,
14
(
3
), pp.
85
100
.
59.
Jensen
,
D.
,
Wood
,
J.
, and
Wood
,
K.
,
2003
, “
Hands-on Activities, Interactive Multimedia and Improved Team Dynamics for Enhancing Mechanical Engineering Curricula
,”
Int. J. Eng. Educ.
,
19
(
6
), pp.
874
884
.
60.
Kotsiantis
,
S. B.
,
Zaharakis
,
I.
, and
Pintelas
,
P.
,
2007
, “
Supervised Machine Learning: A Review of Classification Techniques
,”
Emerg. Artif. Intell. Appl. Comput. Eng.
,
160
(
1
), pp.
3
24
.
61.
Viswanathan
,
V.
,
Atilola
,
O.
,
Esposito
,
N.
, and
Linsey
,
J.
,
2014
, “
A Study on the Role of Physical Models in the Mitigation of Design Fixation
,”
J. Eng. Des.
,
25
(
1–3
), pp.
25
43
.
62.
Baker
,
R. S.
,
D’Mello
,
S. K.
,
Rodrigo
,
M. M. T.
, and
Graesser
,
A. C.
, “
Better to be Frustrated Than Bored: The Incidence, Persistence, and Impact of Learners' Cognitive–Affective States During Interactions With Three Different Computer-Based Learning Environments
,”
Int. J. Hum. Comput. Stud.
,
68
(
4
), pp.
223
241
.
63.
Crilly
,
N.
,
2019
, “
Creativity and Fixation in the Real World: A Literature Review of Case Study Research
,”
Des. Stud.
,
64
, pp.
154
168
.
64.
Rahman
,
M. H.
,
Schimpf
,
C.
,
Xie
,
C.
, and
Sha
,
Z.
,
2019
, “
A Computer-Aided Design Based Research Platform for Design Thinking Studies
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121102
.
65.
Yuan
,
P.
,
Li
,
Y.
,
Chen
,
J.
,
Xiong
,
Y.
, and
Liu
,
L.
,
2018
, “
Experimental Study on the Associations Among Sketches Based on Design Cognition
,”
ASME J. Mech. Des.
,
140
(
10
), p.
101102
.
66.
Jiang
,
S.
,
Sarica
,
S.
,
Song
,
B.
,
Hu
,
J.
, and
Luo
,
J.
,
2022
, “
Patent Data for Engineering Design: A Critical Review and Future Directions
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
6
), p.
060902
.
67.
Song
,
H.
, and
Fu
,
K.
,
2022
, “
Design-by-Analogy: Effects of Exploration-Based Approach on Analogical Retrievals and Design Outcomes
,”
ASME J. Mech. Des.
,
144
(
6
), p.
061401
.
68.
Jiang
,
S.
,
Luo
,
J.
,
Ruiz-Pava
,
G.
,
Hu
,
J.
, and
Magee
,
C. L.
,
2021
, “
Deriving Design Feature Vectors for Patent Images Using Convolutional Neural Networks
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061405
.
69.
Jiang
,
S.
,
Hu
,
J.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Data-Driven Design-By-Analogy: State-of-the-Art and Future Directions
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020801
.
70.
Chan
,
J.
,
Fu
,
K.
,
Schunn
,
C.
,
Cagan
,
J.
,
Wood
,
K.
, and
Kotovsky
,
K.
,
2011
, “
On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081004
.
71.
Zhu
,
Q.
, and
Luo
,
J.
,
2023
, “
Generative Transformers for Design Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041003
.
72.
Zhu
,
Q.
,
Zhang
,
X.
, and
Luo
,
J.
,
2023
, “
Biologically Inspired Design Concept Generation Using Generative Pre-Trained Transformers
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041409
.
73.
Jiang
,
S.
, and
Luo
,
J.
,
2022
, “
Technology Fitness Landscape for Design Innovation: A Deep Neural Embedding Approach Based on Patent Data
,”
J. Eng. Des.
,
33
(
10
), pp.
716
727
.
74.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowledge-Based Syst.
,
218
, pp.
106873
.
75.
Yang
,
Z.
,
Ch8hen
,
Y.
, and
Zhang
,
S.
,
2021
, “
Recognition of Design Fixation via Body Language Using Computer Vision
,”
Math. Probl. Eng.
, pp.
1
18
.
You do not currently have access to this content.