Abstract

Reliability-based control co-design (RBCCD) formulations have been developed for the design of stochastic dynamic systems. To address the limitations of their current formulations, and to enable higher-fidelity solutions for complex problems, a novel reliability-based multidisciplinary feasible (MDF) formulation of multidisciplinary dynamic system design optimization (RB-MDF-MDSDO) and a new reliability analysis method using generalized polynomial chaos (gPC) expansion for RBCCD were developed in previous work. Although the gPC expansion method was initially selected for the reliability analysis of simulation-based RBCCD, its performance against state-of-the-art, the most-probable-point (MPP) method, has not been established yet. Therefore, in this work, the first-ever MPP-based formulations of RB-MDF-MDSDO are developed, and using two engineering test problems, the new formulations’ solution efficiency and accuracy are compared to those from the gPC-based formulation. Numerical results reveal that the gPC expansion method is marginally more accurate than the MPP algorithms, and therefore, it is more suitable for accuracy-sensitive applications. Conversely, the MPP algorithms are much more efficient, and thus, are more attractive for problems where solution efficiency is the priority.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Reyer
,
J. A.
,
Fathy
,
H. K.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
Comparison of Combined Embodiment Design and Control Optimization Strategies Using Optimality Conditions
,”
ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Pittsburgh, PA
,
Sept. 9–12
,
ASME
, pp.
1023
1032
.
2.
Friedland
,
B.
,
1995
,
Advanced Control System Design
,
Prentice-Hall Inc.
,
Hoboken, NJ
.
3.
Roos
,
F.
,
2007
, “
Towards a Methodology for Integrated Design of Mechatronic Servo Systems
,”
Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden.
4.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proceedings of the 2001 American Control Conference
,
Arlington, VA
,
June 25–27
,
IEEE
, pp.
1864
1869
.
5.
Peters
,
D. L.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2010
, “
On Measures of Coupling Between the Artifact and Controller Optimal Design Problems
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
,
ASME
, pp.
1363
1372
.
6.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.
7.
Azad
,
S.
,
Behtash
,
M.
,
Houshmand
,
A.
, and
Alexander-Ramos
,
M.
,
2017
, “
Comprehensive PHEV Powertrain Co-Design Performance Studies Using MDSDO
,”
Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization: Advances in Structural and Multidisciplinary Optimization, June 5–9
,
Springer
,
Braunschweig, Cham
, pp.
83
97
.
8.
Azad
,
S.
,
Behtash
,
M.
,
Houshmand
,
A.
, and
Alexander-Ramos
,
M. J.
,
2019
, “
PHEV Powertrain Co-design With Vehicle Performance Considerations Using MDSDO
,”
Struct. Multidiscipl. Optim.
,
60
, pp.
1155
1169
.
9.
Fahdzyana
,
C. A.
,
van Raemdonck
,
S.
,
Vergote
,
K.
, and
Hofman
,
T.
,
2020
, “
Joined Plant and Control Design for Continuous Variable Transmission Systems
,”
2020 American Control Conference (ACC), July 1–3
,
IEEE
,
Piscataway, NJ
, pp.
3017
3022
.
10.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2018
, “
Decomposition-Based MDSDO For Co-Design of Large-Scale Dynamic Systems
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Aug. 26–29
,
ASME
,
New York, NY
, p.
V02AT03A003
.
11.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
A Decomposition-Based Optimization Algorithm for Combined Plant and Control Design of Interconnected Dynamic Systems
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061703
.
12.
Pedroso
,
D. M.
,
2017
, “
FORM Reliability Analysis Using a Parallel Evolutionary Algorithm
,”
Struct. Saf.
,
65
, pp.
84
99
.
13.
Wu
,
H.
,
Hu
,
Z.
, and
Du
,
X.
,
2021
, “
Time-Dependent System Reliability Analysis With Second-Order Reliability Method
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031101
.
14.
Wu
,
H.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Second-Order Saddlepoint Approximation
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
4
), p.
041001
.
15.
Azad
,
S.
, and
Herber
,
D. R.
,
2023
, “
An Overview of Uncertain Control Co-Design Formulations
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091709
.
16.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2019
, “
A Comparative Study of Formulations and Algorithms for Reliability-Based Co-Design Problems
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031104
.
17.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2021
, “
A Single-Loop Reliability-Based MDSDO Formulation for Combined Design and Control Optimization of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021703
.
18.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
Reliability-Based Co-Design of State-Constrained Stochastic Dynamical Systems
,”
AIAA SciTech 2020 Forum, Jan. 6–10
,
AIAA
,
Orlando, FL, Reston, VA
, pp.
1
14
.
19.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2022
, “
A Reliability-Based Formulation for Simulation-Based Control Co-Design Using Generalized Polynomial Chaos Expansion
,”
ASME J. Mech. Des.
,
144
(
5
), p.
051705
.
20.
Sherbaf Behtash
,
M.
,
2022
, “
Reliability-Based Formulations for Simulation-Based Control Co-Design
,”
Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
21.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.
22.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
23.
Biegler
,
L. T.
,
2010
,
Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes
,
SIAM
,
Philadelphia, PA
.
24.
Haldar
,
A.
, and
Mahadevan
,
S.
,
1999
,
Probability, Reliability and Statistical Methods in Engineering Design
,
John Wiley & Sons
,
Hoboken, NJ
.
25.
Lee
,
S. H.
, and
Chen
,
W.
,
2009
, “
A Comparative Study of Uncertainty Propagation Methods for Black-Box-Type Problems
,”
Struct. Multidiscipl. Optim.
,
37
, pp.
239
253
.
26.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
27.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-dimensional Integration in Stochastic Mechanics
,”
Prob. Eng. Mech.
,
19
(
4
), pp.
393
408
.
28.
Xu
,
H.
, and
Rahman
,
S.
,
2004
, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
,
61
(
12
), pp.
1992
2019
.
29.
Smolyak
,
S. A.
,
1963
, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions
,”
Soviet Mathem. Doklady
,
4
, pp.
240
243
.
30.
Xiu
,
D.
,
2009
, “
Fast Numerical Methods for Stochastic Computations: A Review
,”
Commun. Comput. Phys.
,
5
(
2–4
), pp.
242
272
.
31.
Wu
,
Y.-T.
, and
Wang
,
W.
,
1998
, “
Efficient Probabilistic Design by Converting Reliability Constraints to Approximately Equivalent Deterministic Constraints
,”
Soc. Design Process Sci.
,
2
(
4
), pp.
13
21
.
32.
Han
,
J.
,
2008
, “
Sequential Linear Programming Coordination Strategy for Deterministic and Probabilistic Analytical Target Cascading
,”
Ph.D. thesis, University of Michigan, Ann Arbor, MI.
33.
Cottrill
,
G. C.
,
2012
, “
Hybrid Solution of Stochastic Optimal Control Problems Using Gauss Pseudospectral Method and Generalized Polynomial Chaos Algorithms
,”
Ph.D. thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH.
34.
Lee
,
S. H.
, and
Chen
,
W.
,
2007
, “
A Comparative Study of Uncertainty Propagation Methods for Black-box Type Functions
,”
ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Sept. 4–7
,
ASME
,
New York, NY
, pp.
1275
1284
.
35.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. Division
,
100
(
1
), pp.
111
121
.
36.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
,
1982
, “
First-Order Concepts in System Reliability
,”
Struct. Saf.
,
1
(
3
), pp.
177
188
.
37.
Breitung
,
K.
,
1984
, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
,
110
(
3
), pp.
357
366
.
38.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Statist.
,
23
(
3
), pp.
470
472
.
39.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
,
1986
,
Methods of Structural Safety
,
Dover Publications, Inc.
,
Mineola, NY
.
40.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
1999
, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
557
564
.
41.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
42.
Becerra
,
V. M.
,
2004
, “
Solving Optimal Control Problems With State Constraints Using Nonlinear Programming and Simulation Tools
,”
IEEE Trans. Educ.
,
47
(
3
), pp.
377
384
.
43.
Damme
,
G. V.
,
2010
, “
Legendre Laguerre and Hermite – Gauss Quadrature
,” https://www.mathworks.com/matlabcentral/fileexchange/26737-legendre-laguerre-and-hermite-gauss-quadrature. MATLAB Central File Exchange; Retrieved October 1, 2019.
44.
Suinesiaputra
,
A.
,
2010
, “
Hermite Polynomials
,” https://www.mathworks.com/matlabcentral/fileexchange/27746-hermite-polynomials. MATLAB Central File Exchange; Retrieved January 10, 2020.
You do not currently have access to this content.