Abstract

Dimensional and geometric variations are significant factors of products at the manufacturing stage. Because of these variations, the physical appearance or functionality of the final product may deviate from expectations. As of the present, research on variation analysis has been conducted at the feature level. To model the information and analyze the variation transfers of products, a graphical model is constructed by using the product feature and information. Through analysis of the relationship between the product and network model, a modeling process for the feature information network is proposed. Nodes, lines, and constraints in the network are defined in detail, and the dimension unit is defined to represent the dimension information within a part. Variations caused by connections between parts are divided into two categories of influence. Combining the dimension unit and the influence between parts, a variation analysis process is devised based on the proposed network model. To verify the effectiveness and feasibility of the proposed method, a case study is performed based on the grand assembly of a hull block. The result shows that the product can be modeled and the variation can be analyzed by the proposed network model.

References

1.
Ghie
,
W.
,
Laperrière
,
L.
, and
Desrochers
,
A.
,
2010
, “
Statistical Tolerance Analysis Using the Unified Jacobian–Torsor Model
,”
Int. J. Prod. Res.
,
48
(
15
), pp.
4609
4630
.
2.
Cao
,
Y.
,
Liu
,
T.
, and
Yang
,
J.
,
2018
, “
A Comprehensive Review of Tolerance Analysis Models
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5
), pp.
3055
3085
.
3.
Li
,
Z.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Hu
,
S. J.
,
2008
, “
Product and Process Tolerance Allocation in Multistation Compliant Assembly Using Analytical Target Cascading
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091701
.
4.
Fu
,
W.
, and
Nelaturi
,
S.
,
2017
, “
Automatic Tolerance Analysis for Assessing Manufacturing Errors in Machining Plans
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041701
.
5.
Dumas
,
A.
,
Dantan
,
J. Y.
, and
Gayton
,
N. N.
,
2015
, “
Impact of a Behavior Model Linearization Strategy on the Tolerance Analysis of Over-Constrained Mechanisms
,”
Comput. Aided Des.
,
62
, pp.
152
163
.
6.
Xiao
,
S.
,
Xudong
,
C.
,
Li
,
Z.
, and
Guanghong
,
G.
,
2010
, “
Modeling Framework for Product Lifecycle Information
,”
Simul. Model. Pract. Theory
,
18
(
8
), pp.
1080
1091
.
7.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
Skin Model Shapes: A New Paradigm Shift for Geometric Variations Modelling in Mechanical Engineering
,”
Comput. Aided Des.
,
50
, pp.
1
15
.
8.
Browning
,
T. R.
,
2015
, “
Design Structure Matrix Extensions and Innovations: A Survey and New Opportunities
,”
IEEE Trans. Eng. Manag.
,
63
(
1
), pp.
27
52
.
9.
Li
,
Y.
,
Zhao
,
W.
, and
Shao
,
X.
,
2012
, “
A Process Simulation Based Method for Scheduling Product Design Change Propagation
,”
Adv. Eng. Inform.
,
26
(
3
), pp.
529
538
.
10.
Duran-Novoa
,
R.
,
Weigl
,
J. D.
,
Henz
,
M.
, and
Koh
,
E. C.
,
2018
, “
Designing in Young Organisations: Engineering Change Propagation in a University Design Project
,”
Res. Eng. Des.
,
29
(
4
), pp.
489
506
.
11.
Jeevanantham
,
A. K.
,
Chaitanya
,
S. V.
, and
Rajeshkannan
,
A.
,
2019
, “
Tolerance Analysis in Selective Assembly of Multiple Component Features to Control Assembly Variation Using Matrix Model and Genetic Algorithm
,”
Int. J. Precis. Eng. Manuf.
,
20
(
10
), pp.
1801
1815
.
12.
Cheng
,
H.
, and
Chu
,
X.
,
2012
, “
A Network-Based Assessment Approach for Change Impacts on Complex Product
,”
J. Intell. Manuf.
,
23
(
4
), pp.
1419
1431
.
13.
Li
,
Y.
,
Chu
,
X.
,
Chu
,
D.
, and
Liu
,
Q.
,
2014
, “
An Integrated Module Partition Approach for Complex Products and Systems Based on Weighted Complex Networks
,”
Int. J. Prod. Res.
,
52
(
15
), pp.
4608
4622
.
14.
Jiang
,
P.
,
Zheng
,
Y.
,
Chen
,
L.
, and
Li
,
S.
,
2018
, “
A Case Study of Product Design and Process Information Model Based on Complex Network
,”
Proceedings of 48th International Conference on Computers and Industrial Engineering, CIE 2018
,
Auckland, New Zealand
,
Dec. 2–5
, pp. 1–15, Paper No. 209.
15.
Chen
,
L.
,
Zheng
,
Y.
,
Xi
,
J.
, and
Li
,
S.
,
2020
, “
An Analysis Method for Change Propagation Based on Product Feature Network
,”
Res. Eng. Des.
,
31
(
4
), pp.
491
503
.
16.
Li
,
K.
,
Gao
,
Y.
,
Zheng
,
H.
, and
Tan
,
J.
,
2021
, “
A Data-Driven Methodology to Improve Tolerance Allocation Using Product Usage Data
,”
ASME J. Mech. Des.
,
143
(
7
), p.
071101
.
17.
Park
,
K.
, and
Kremer
,
G. E. O.
,
2019
, “
Topological Characterization of an Evolving Product Structure Network: A Case Study of Generational Smartphone Products
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091103
.
18.
Kannengiesser
,
U.
, and
Gero
,
J. S.
,
2015
, “
Is Designing Independent of Domain? Comparing Models of Engineering, Software and Service Design
,”
Res. Eng. Des.
,
26
(
3
), pp.
253
275
.
19.
Yu
,
G.
,
Yu
,
Y.
,
Zhang
,
X.
, and
Li
,
C.
,
2017
, “
Network-Based Analysis of Requirement Change in Customized Complex Product Development
,”
Int. J. Inf. Technol. Decis. Mak.
,
16
(
04
), pp.
1125
1149
.
20.
Yin
,
Y.
,
Wang
,
S.
, and
Zhou
,
J.
,
2022
, “
Complex Network–Based Change Propagation Path Optimization in Mechanical Product Development
,”
IEEE Access
,
10
, pp.
17389
17399
.
21.
Dong
,
C.
,
Yang
,
Y.
,
Chen
,
Q.
, and
Wu
,
Z.
,
2022
, “
A Complex Network-Based Response Method for Changes in Customer Requirements for Design Processes of Complex Mechanical Products
,”
Expert Syst. Appl.
,
199
, p.
117124
.
22.
Zheng
,
Y.
,
Chen
,
L.
,
Jiang
,
P.
, and
Cheng
,
H.
,
2022
, “
A Sub-Assembly Division Method Based on Community Detection Algorithm
,”
Int. J. Comput. Integr. Manuf.
,
35
(
10–11
), pp.
1133
1150
.
23.
Lee
,
Y. H.
,
Wei
,
C. C.
,
Chen
,
C. B.
, and
Tsai
,
C. H.
,
2000
, “
Minimization of Scrap and Rework Costs by Process Tolerances Allocation
,”
Eng. Optim.+ A35
,
32
(
5
), pp.
619
633
.
24.
Chase
,
K. W.
,
Gao
,
J.
, and
Magleby
,
S. P.
,
1995
, “
General 2-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments
,”
J. Des. Manuf.
,
5
(
4
), pp.
263
274
.
25.
Gao
,
J.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
,
1998
, “
Generalized 3-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments
,”
IIE Trans.
,
30
(
4
), pp.
367
377
.
26.
Yan
,
H.
,
Cao
,
Y.
, and
Yang
,
J.
,
2016
, “
Statistical Tolerance Analysis Based on Good Point Set and Homogeneous Transform Matrix
,”
Procedia CIRP
,
43
, pp.
178
183
.
27.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2003
, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
28.
Zhang
,
T.
, and
Shi
,
J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part I: Single-Station Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121003
.
29.
Zhang
,
T.
, and
Shi
,
J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part II: Multistation Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121004
.
30.
Marziale
,
M.
, and
Polini
,
W.
,
2011
, “
A Review of Two Models for Tolerance Analysis of an Assembly: Jacobian and Torsor
,”
Int. J. Comput. Integr. Manuf.
,
24
(
1
), pp.
74
86
.
31.
Chen
,
H.
,
Li
,
X.
, and
Jin
,
S.
,
2021
, “
A Statistical Method of Distinguishing and Quantifying Tolerances in Assemblies
,”
Comput. Ind. Eng.
,
156
, p.
107259
.
32.
He
,
C.
,
Zhang
,
S.
,
Qiu
,
L.
,
Wang
,
Z.
,
Wang
,
Y.
, and
Liu
,
X.
,
2020
, “
Statistical Tolerance Allocation Design Considering Form Errors Based on Rigid Assembly Simulation and Deep Q-Network
,”
Int. J. Adv. Manuf. Technol.
,
111
(
11
), pp.
3029
3045
.
33.
Lin
,
J.
,
Jin
,
S.
,
Zheng
,
C.
,
Li
,
Z. M.
, and
Liu
,
Y. H.
,
2014
, “
Compliant Assembly Variation Analysis of Aeronautical Panels Using Unified Substructures With Consideration of Identical Parts
,”
Comput. Aided Des.
,
57
, pp.
29
40
.
34.
Zhang
,
Z.
,
Dai
,
Y.
, and
Li
,
Z.
,
2012
, “
Deviation Diagnosis and Analysis of Hull Flat Block Assembly Based on a State Space Model
,”
J. Mar. Sci. Appl.
,
11
(
3
), pp.
311
320
.
You do not currently have access to this content.