Abstract

Bayesian optimization (BO) is a sequential optimization strategy that is increasingly employed in a wide range of areas such as materials design. In real-world applications, acquiring high-fidelity (HF) data through physical experiments or HF simulations is the major cost component of BO. To alleviate this bottleneck, multi-fidelity (MF) methods are used to forgo the sole reliance on the expensive HF data and reduce the sampling costs by querying inexpensive low-fidelity (LF) sources whose data are correlated with HF samples. However, existing multi-fidelity BO (MFBO) methods operate under the following two assumptions that rarely hold in practical applications: (1) LF sources provide data that are well correlated with the HF data on a global scale, and (2) a single random process can model the noise in the MF data. These assumptions dramatically reduce the performance of MFBO when LF sources are only locally correlated with the HF source or when the noise variance varies across the data sources. In this paper, we view these two limitations and uncertainty sources and address them by building an emulator that more accurately quantifies uncertainties. Specifically, our emulator (1) learns a separate noise model for each data source, and (2) leverages strictly proper scoring rules in regularizing itself. We illustrate the performance of our method through analytical examples and engineering problems in materials design. The comparative studies indicate that our MFBO method outperforms existing technologies, provides interpretable results, and can leverage LF sources which are only locally correlated with the HF source.

References

1.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
De Freitas
,
N.
,
2015
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.
2.
Brochu
,
E.
,
Cora
,
V. M.
, and
De Freitas
,
N.
,
2010
, “
A Tutorial on Bayesian Optimization of Expensive Cost Functions, With Application to Active User Modeling and Hierarchical Reinforcement Learning
,”
arXiv preprint arXiv:1012.2599
. https://arxiv.org/abs/1012.2599
3.
Adams
,
R. P.
,
2014
, “
A Tutorial on Bayesian Optimization for Machine Learning
,”
Harvard University
,
Cambridge, MA
.
4.
Frazier
,
P. I.
,
2018
, “
A Tutorial on Bayesian Optimization
,”
arXiv preprint
. https://arxiv.org/abs/1807.02811
5.
Nguyen
,
L.
,
2023
, “Tutorial on Bayesian Optimization”.
6.
Li
,
S.
,
Xing
,
W.
,
Kirby
,
R.
, and
Zhe
,
S.
,
2020
, “
Multi-fidelity Bayesian Optimization Via Deep Neural Networks
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
8521
8531
.
7.
Couckuyt
,
I.
,
Gonzalez
,
S. R.
, and
Branke
,
J.
,
2022
, “
Bayesian Optimization: Tutorial
,”
Proceedings of the Genetic and Evolutionary Computation Conference Companion
,
Boston, MA
, pp.
843
863
.
8.
Frazier
,
P. I.
, and
Wang
,
J.
,
2015
, “Bayesian Optimization for Materials Design,”
Information Science for Materials Discovery and Design
,
T.
Lookman
,
F. J.
Alexander
, and
K.
Rajan
, eds.,
Springer
,
New York City
, pp.
45
75
.
9.
Turner
,
R.
,
Eriksson
,
D.
,
McCourt
,
M.
,
Kiili
,
J.
,
Laaksonen
,
E.
,
Xu
,
Z.
, and
Guyon
,
I.
,
2020
, “
Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
,”
2020 Conference on Neural Information Processing Systems
,
Chicago, IL
,
Dec. 6–12
, PMLR, pp.
3
26
.
10.
Song
,
J.
,
Chen
,
Y.
, and
Yue
,
Y.
,
2019
, “
A General Framework for Multi-fidelity Bayesian Optimization With Gaussian Processes
,”
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics
,
Naha, Okinawa, Japan
,
Apr. 16–18
, PMLR, pp.
3158
3167
.
11.
Takeno
,
S.
,
Fukuoka
,
H.
,
Tsukada
,
Y.
,
Koyama
,
T.
,
Shiga
,
M.
,
Takeuchi
,
I.
, and
Karasuyama
,
M.
,
2020
, “
Multi-fidelity Bayesian Optimization With Max-Value Entropy Search and Its Parallelization
,”
Proceedings of the 37th International Conference on Machine Learning
,
Vienna, Austria
,
July 13–18
, PMLR, pp.
9334
9345
.
12.
Zhang
,
S.
,
Lyu
,
W.
,
Yang
,
F.
,
Yan
,
C.
,
Zhou
,
D.
,
Zeng
,
X.
, and
Hu
,
X.
,
2019
, “
An Efficient Multi-fidelity Bayesian Optimization Approach for Analog Circuit Synthesis
,”
Proceedings of the 56th Annual Design Automation Conference 2019
,
New York
,
June 2–6
, pp.
1
6
.
13.
Kandasamy
,
K.
,
Dasarathy
,
G.
,
Schneider
,
J.
, and
Póczos
,
B.
,
2017
, “
Multi-Fidelity Bayesian Optimisation With Continuous Approximations
,”
Proceedings of the 34th International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
, PMLR, pp.
1799
1808
.
14.
Zhang
,
Y.
,
Hoang
,
T. N.
,
Low
,
B. K. H.
, and
Kankanhalli
,
M.
,
2017
, “
Information-Based Multi-fidelity Bayesian Optimization
,”
Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, p.
49
.
15.
Shu
,
L.
,
Jiang
,
P.
, and
Wang
,
Y.
,
2021
, “
A Multi-fidelity Bayesian Optimization Approach Based on the Expected Further Improvement
,”
Struct. Multidiscipl. Optim.
,
63
, pp.
1709
1719
.
16.
Tran
,
A.
,
Wildey
,
T.
, and
McCann
,
S.
,
2020
, “
sMF-BO-2CoGP A Sequential Multi-fidelity Constrained Bayesian Optimization Framework for Design Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031007
.
17.
Li
,
S.
,
Kirby
,
R.
, and
Zhe
,
S.
,
2021
, “
Batch Multi-fidelity Bayesian Optimization With Deep Auto-Regressive Networks
,”
Adv. Neural Inf. Process. Syst.
,
34
, pp.
25463
25475
.
18.
Zhang
,
X.
,
Xie
,
F.
,
Ji
,
T.
,
Zhu
,
Z.
, and
Zheng
,
Y.
,
2021
, “
Multi-fidelity Deep Neural Network Surrogate Model for Aerodynamic Shape Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
373
, p.
113485
.
19.
Li
,
Z.
,
Zhang
,
S.
,
Li
,
H.
,
Tian
,
K.
,
Cheng
,
Z.
,
Chen
,
Y.
, and
Wang
,
B.
,
2022
, “
On-Line Transfer Learning for Multi-fidelity Data Fusion With Ensemble of Deep Neural Networks
,”
Adv. Eng. Inform.
,
53
, p.
101689
.
20.
Liu
,
D.
, and
Wang
,
Y.
,
2019
, “
Multi-Fidelity Physics-Constrained Neural Network and Its Application in Materials Modeling
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121403
.
21.
Sarkar
,
S.
,
Mondal
,
S.
,
Joly
,
M.
,
Lynch
,
M. E.
,
Bopardikar
,
S. D.
,
Acharya
,
R.
, and
Perdikaris
,
P.
,
2019
, “
Multifidelity and Multiscale Bayesian Framework for High-Dimensional Engineering Design and Calibration
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121001
.
22.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Miller
,
R. A.
,
2006
, “
Sequential Kriging Optimization Using Multiple-Fidelity Evaluations
,”
Struct. Multidiscipl. Optim.
,
32
, pp.
369
382
.
23.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
.
24.
Le Gratiet
,
L.
, and
Cannamela
,
C.
,
2015
, “
Cokriging-Based Sequential Design Strategies Using Fast Cross-Validation Techniques for Multi-fidelity Computer Codes
,”
Technometrics
,
57
(
3
), pp.
418
427
.
25.
Picheny
,
V.
,
Ginsbourger
,
D.
,
Richet
,
Y.
, and
Caplin
,
G.
,
2013
, “
Quantile-Based Optimization of Noisy Computer Experiments With Tunable Precision
,”
Technometrics
,
55
(
1
), pp.
2
13
.
26.
Kandasamy
,
K.
,
Dasarathy
,
G.
,
Oliva
,
J. B.
,
Schneider
,
J.
, and
Póczos
,
B.
,
2016
, “
Gaussian Process Bandit Optimisation With Multi-fidelity Evaluations
,”
Adv. Neural Inf. Process. Syst.
,
29
.
27.
Sun
,
Q.
,
Chen
,
T.
,
Liu
,
S.
,
Chen
,
J.
,
Yu
,
H.
, and
Yu
,
B.
,
2022
, “
Correlated Multi-objective Multi-fidelity Optimization for Hls Directives Design
,”
ACM Trans. Des. Autom. Electron. Syst. (TODAES)
,
27
(
4
), pp.
1
27
.
28.
Lam
,
R.
,
Allaire
,
D. L.
, and
Willcox
,
K. E.
,
2015
, “
Multifidelity Optimization Using Statistical Surrogate Modeling for Non-Hierarchical Information Sources
,”
56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 5–9
, p.
0143
.
29.
Winkler
,
R. L.
,
1981
, “
Combining Probability Distributions From Dependent Information Sources
,”
Manage. Sci.
,
27
(
4
), pp.
479
488
.
30.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
31.
Raissi
,
M.
, and
Karniadakis
,
G.
,
2016
, “
Deep Multi-Fidelity Gaussian Processes
,”
arXiv preprint arXiv:1604.07484
. https://arxiv.org/abs/1604.07484
32.
Son
,
S.-H.
,
Park
,
D.-H.
,
Cha
,
K.-J.
, and
Choi
,
D.-H.
,
2013
, “
Constrained Global Design Optimization Using a Multi-fidelity Model
,” 10th World Congress on Structural and Multidisciplinary Optimization.
33.
Le Gratiet
,
L.
,
2013
, “
Bayesian Analysis of Hierarchical Multifidelity Codes
,”
SIAM/ASA J. Uncertain. Quantif.
,
1
(
1
), pp.
244
269
.
34.
Eldred
,
M. S.
,
Ng
,
L. W.
,
Barone
,
M. F.
, and
Domino
,
S. P.
,
2015
, “Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models,” Technical Report, Sandia National Laboratory (SNL-NM), Albuquerque, NM.
35.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Calibration and Validation Framework for Selective Laser Melting Process Based on Multi-fidelity Models and Limited Experiment Data
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081701
.
36.
Kleiber
,
W.
,
Sain
,
S. R.
,
Heaton
,
M. J.
,
Wiltberger
,
M.
,
Reese
,
C. S.
, and
Bingham
,
D.
,
2013
, “
Parameter Tuning for a Multi-fidelity Dynamical Model of the Magnetosphere
,”
Ann. Appl. Stat.
,
7
(
3
), pp.
1286
1310
.
37.
Xiao
,
M.
,
Zhang
,
G.
,
Breitkopf
,
P.
,
Villon
,
P.
, and
Zhang
,
W.
,
2018
, “
Extended Co-Kriging Interpolation Method Based on Multi-fidelity Data
,”
Appl. Math. Comput.
,
323
, pp.
120
131
.
38.
Perdikaris
,
P.
,
Venturi
,
D.
,
Royset
,
J. O.
, and
Karniadakis
,
G. E.
,
2015
, “
Multi-fidelity Modelling Via Recursive Co-Kriging and Gaussian–Markov Random Fields
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
471
(
2179
), p.
20150018
.
39.
Zhou
,
Q.
,
Wu
,
Y.
,
Guo
,
Z.
,
Hu
,
J.
, and
Jin
,
P.
,
2020
, “
A Generalized Hierarchical Co-Kriging Model for Multi-fidelity Data Fusion
,”
Struct. Multidiscipl. Optim.
,
62
, pp.
1885
1904
.
40.
Chen
,
C.
,
Ran
,
D.
,
Yang
,
Y.
,
Hou
,
H.
, and
Peng
,
C.
,
2023
, “
Topsis Based Multi-fidelity Co-Kriging for Multiple Response Prediction of Structures With Uncertainties Through Real-Time Hybrid Simulation
,”
Eng. Struct.
,
280
, p.
115734
.
41.
Ruan
,
X.
,
Jiang
,
P.
,
Zhou
,
Q.
, and
Yang
,
Y.
,
2019
, “
An Improved Co-Kriging Multi-fidelity Surrogate Modeling Method for Non-Nested Sampling Data
,”
Int. J. Mech. Eng. Rob. Res.
,
8
(
4
), pp.
1
9
.
42.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Wu
,
Y.
, and
Gary Wang
,
G.
,
2020
, “
Multi-fidelity Modeling and Adaptive Co-Kriging-Based Optimization for All-Electric Geostationary Orbit Satellite Systems
,”
ASME J. Mech. Des.
,
142
(
2
), p.
021404
.
43.
Gardner
,
J.
,
Pleiss
,
G.
,
Weinberger
,
K. Q.
,
Bindel
,
D.
, and
Wilson
,
A. G.
,
2018
, “
Gpytorch: Blackbox Matrix-Matrix Gaussian Process Inference With GPU Acceleration
,”
Adv. Neural Inf. Process. Syst.
,
31
.
44.
Zanjani Foumani
,
Z.
,
Shishehbor
,
M.
,
Yousefpour
,
A.
, and
Bostanabad
,
R.
,
2023
, “
Multi-Fidelity Cost-Aware Bayesian Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
407
, p.
115937
.
45.
Escamilla-Ambrosio
,
P. J.
, and
Mort
,
N.
,
2003
, “
Hybrid Kalman Filter-Fuzzy Logic Adaptive Multisensor Data Fusion Architectures
,”
Proceedings of the 42nd IEEE Conference on Decision and Control
,
Maui, HI
,
Dec. 9–12
, Vol. 5, IEEE, pp.
5215
5220
.
46.
Kreibich
,
O.
,
Neuzil
,
J.
, and
Smid
,
R.
,
2013
, “
Quality-Based Multiple-Sensor Fusion in an Industrial Wireless Sensor Network for MCM
,”
IEEE. Trans. Ind. Electron.
,
61
(
9
), pp.
4903
4911
.
47.
Eweis-Labolle
,
J. T.
,
Oune
,
N.
, and
Bostanabad
,
R.
,
2022
, “
Data Fusion With Latent Map Gaussian Processes
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091703
.
48.
Oune
,
N.
, and
Bostanabad
,
R.
,
2021
, “
Latent Map Gaussian Processes for Mixed Variable Metamodeling
,”
Comput. Meth. Appl. Mech. Eng.
,
387
, p.
114128
.
49.
Bostanabad
,
R.
,
Kearney
,
T.
,
Tao
,
S.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2018
, “
Leveraging the Nugget Parameter for Efficient Gaussian Process Modeling
,”
Int. J. Numer. Meth. Eng.
,
114
(
5
), pp.
501
516
.
50.
Carvalho
,
C. M.
,
Polson
,
N. G.
, and
Scott
,
J. G.
,
2010
, “
The Horseshoe Estimator for Sparse Signals
,”
Biometrika
,
97
(
2
), pp.
465
480
.
51.
Gal
,
Y.
,
Van Der Wilk
,
M.
, and
Rasmussen
,
C. E.
,
2014
, “
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
,”
Adv. Neural Inf. Process. Syst.
,
27
.
52.
Mohammed
,
R. O.
, and
Cawley
,
G. C.
,
2017
, “
Over-Fitting in Model Selection With Gaussian Process Regression
,” Machine Learning and Data Mining in Pattern Recognition: 13th International Conference, MLDM 2017, New York, NY, July 15–20, Proceedings 13,
Springer
, pp.
192
205
.
53.
Lindley
,
D. V.
,
1982
, “
Scoring Rules and the Inevitability of Probability
,”
Int. Stat. Rev./Revue Int. Stat.
,
50
(
1
), pp.
1
11
.
54.
Bracher
,
J.
,
Ray
,
E. L.
,
Gneiting
,
T.
, and
Reich
,
N. G.
,
2021
, “
Evaluating Epidemic Forecasts in an Interval Format
,”
PLoS Comput. Biol.
,
17
(
2
), p.
e1008618
.
55.
Mitchell
,
K.
, and
Ferro
,
C.
,
2017
, “
Proper Scoring Rules for Interval Probabilistic Forecasts
,”
Q. J. R. Metereol. Soc.
,
143
(
704
), pp.
1597
1607
.
56.
Gneiting
,
T.
, and
Raftery
,
A. E.
,
2007
, “
Strictly Proper Scoring Rules, Prediction, and Estimation
,”
J. Am. Stat. Assoc.
,
102
(
477
), pp.
359
378
.
57.
Mora
,
C.
,
Eweis-Labolle
,
J. T.
,
Johnson
,
T.
,
Gadde
,
L.
, and
Bostanabad
,
R.
,
2023
, “
Data-Driven Calibration of Multifidelity Multiscale Fracture Models Via Latent Map Gaussian Process
,”
ASME J. Mech. Des.
,
145
(
1
), p.
011705
.
58.
Poloczek
,
M.
,
Wang
,
J.
, and
Frazier
,
P.
,
2017
, “
Multi-Information Source Optimization
,”
Adv. Neural Inf. Process. Syst.
,
30
.
59.
Wu
,
J.
,
Toscano-Palmerin
,
S.
,
Frazier
,
P. I.
, and
Wilson
,
A. G.
,
2020
, “
Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning
,”
Proceedings of the 35th Uncertainty in Artificial Intelligence Conference
,
Toronto, Canada
, PMLR, pp.
788
798
.
60.
Moon
,
H.
,
2010
, “
Design and Analysis of Computer Experiments for Screening Input Variables
,” Ph.D. thesis,
The Ohio State University
,
Columbus, OH
.
61.
Morris
,
M. D.
,
Mitchell
,
T. J.
, and
Ylvisaker
,
D.
,
1993
, “
Bayesian Design and Analysis of Computer Experiments: Use of Derivatives in Surface Prediction
,”
Technometrics
,
35
(
3
), pp.
243
255
.
62.
Cover
,
M.
,
Warschkow
,
O.
,
Bilek
,
M.
, and
McKenzie
,
D.
,
2009
, “
A Comprehensive Survey of M2ax Phase Elastic Properties
,”
J. Phys.: Condens. Matter.
,
21
(
30
), p.
305403
.
63.
Herbol
,
H. C.
,
Hu
,
W.
,
Frazier
,
P.
,
Clancy
,
P.
, and
Poloczek
,
M.
,
2018
, “
Efficient Search of Compositional Space for Hybrid Organic–Inorganic Perovskites Via Bayesian Optimization
,”
npj Comput. Mater.
,
4
(
1
), p.
51
.
You do not currently have access to this content.