Abstract

We propose conditioning field initialization for neural network-based topology optimization. In this work, we focus on (1) improving upon existing neural network-based topology optimization and (2) demonstrating that using a prior initial field on the unoptimized domain, the efficiency of neural network-based topology optimization can be further improved. Our approach consists of a topology neural network that is trained on a case by case basis to represent the geometry for a single topology optimization problem. It takes in domain coordinates as input to represent the density at each coordinate where the topology is represented by a continuous density field. The displacement is solved through a finite element solver. We employ the strain energy field calculated on the initial design domain as an additional conditioning field input to the neural network throughout the optimization. Running the same number of iterations, our method converges to a lower compliance. To reach the same compliance, our method takes fewer iterations. The addition of the strain energy field input improves the convergence speed compared to standalone neural network-based topology optimization.

References

1.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
, pp.
193
202
.
2.
Zhou
,
M.
, and
Rozvany
,
G.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
3.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
4.
Chandrasekhar
,
A.
, and
Suresh
,
K.
,
2021
, “
TOuNN: Topology Optimization Using Neural Networks
,”
Struct. Multidiscipl. Optim.
,
63
, pp.
1135
1149
.
5.
Bense
,
N.
, and
Kikuchi
,
M.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method, Comp
,”
Methodss Appl. Mech. Eng.
,
71
(
5
), pp.
197
224
.
6.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2002
, “
A Level-Set Method for Shape Optimization
,”
Compt. Rendus Math.
,
334
(
12
), pp.
1125
1130
.
7.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
Level Set Method for Structural Topology Optimizations
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1/2
), pp.
227
246
.
8.
Xie
,
Y. M.
,
Steven
,
G. P.
,
Xie
,
Y.
, and
Steven
,
G.
,
1997
,
Basic Evolutionary Structural Optimization
,
Springer
.
9.
Woldseth
,
R. V.
,
Aage
,
N.
,
Bærentzen
,
J. A.
, and
Sigmund
,
O.
,
2022
, “
On the Use of Artificial Neural Networks in Topology Optimisation
,”
Struct. Multidiscipl. Optim.
,
65
(
10
), p.
294
.
10.
Banga
,
S.
,
Gehani
,
H.
,
Bhilare
,
S.
,
Patel
,
S.
, and
Kara
,
L.
,
2018
, “
3D Topology Optimization Using Convolutional Neural Networks
,”
preprint
. https://arxiv.org/abs/1808.07440
11.
Aage
,
N.
,
Andreassen
,
E.
, and
Lazarov
,
B. S.
,
2015
, “
Topology Optimization Using PETSc: An Easy-to-Use, Fully Parallel, Open Source Topology Optimization Framework
,”
Struct. Multidiscipl. Optim.
,
51
, pp.
565
572
.
12.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without Any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
.
13.
Nakamura
,
K.
, and
Suzuki
,
Y.
,
2020
, “
Deep Learning-Based Topological Optimization for Representing a User-Specified Design Area
,”
preprint
. https://arxiv.org/abs/2004.05461
14.
Behzadi
,
M. M.
, and
Ilieş
,
H. T.
,
2021
, “
Real-Time Topology Optimization in 3d Via Deep Transfer Learning
,”
Comput.-Aided Des.
,
135
, p.
103014
.
15.
Zheng
,
S.
,
He
,
Z.
, and
Liu
,
H.
,
2021
, “
Generating Three-Dimensional Structural Topologies Via a U-Net Convolutional Neural Network
,”
Thin-Walled Struct.
,
159
, p.
107263
.
16.
Mazé
,
F.
, and
Ahmed
,
F.
,
2023
, “
Diffusion Models Beat GANs on Topology Optimization
,”
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)
,
Washington, DC
,
Feb 7–14
, pp.
9108
9116
.
17.
Chandrasekhar
,
A.
, and
Suresh
,
K.
,
2021
, “
Length Scale Control in Topology Optimization Using Fourier Enhanced Neural Networks
,”
CoRR
, abs/2109.01861.
18.
Chandrasekhar
,
A.
, and
Suresh
,
K.
,
2021
, “
Multi-Material Topology Optimization Using Neural Networks
,”
CAD Comput. Aided Des.
,
136
.
19.
Deng
,
H.
, and
To
,
A. C.
,
2020
, “
Topology Optimization Based on Deep Representation Learning (DRL) for Compliance and Stress-Constrained Design
,”
Comput. Mech.
,
66
(
2
), pp.
449
469
.
20.
Deng
,
H.
, and
To
,
A. C.
,
2021
, “
A Parametric Level Set Method for Topology Optimization Based on Deep Neural Network
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091702
.
21.
Zehnder
,
J.
,
Li
,
Y.
,
Coros
,
S.
, and
Thomaszewski
,
B.
,
2021
, “
Ntopo: Mesh-Free Topology Optimization Using Implicit Neural Representations
,”
Adv. Neural Inform. Process. Syst.
,
34
, pp.
10368
10381
.
22.
Mai
,
H. T.
,
Mai
,
D. D.
,
Kang
,
J.
,
Lee
,
J.
, and
Lee
,
J.
,
2023
, “
Physics-Informed Neural Energy-Force Network: A Unified Solver-Free Numerical Simulation for Structural Optimization
,”
Eng. Comput.
,
1
24
.
23.
Hoyer
,
S.
,
Sohl-Dickstein
,
J.
, and
Greydanus
,
S.
,
2019
, “
Neural Reparameterization Improves Structural Optimization
,”
preprint
. https://arxiv.org/abs/1909.04240
24.
Zhang
,
Z.
,
Li
,
Y.
,
Zhou
,
W.
,
Chen
,
X.
,
Yao
,
W.
, and
Zhao
,
Y.
,
2021
, “
TONR: An Exploration for a Novel Way Combining Neural Network With Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
386
, p.
114083
.
25.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
, et al.,
2015
, “
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
,”
Software
available from tensorflow.org.
26.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
preprint
. https://arxiv.org/abs/1412.6980
27.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in Matlab Using 88 Lines of Code
,”
Struct. Multidiscipl. Optim.
,
43
, pp.
1
16
.
28.
Liu
,
K.
, and
Tovar
,
A.
,
2014
, “
An Efficient 3d Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
50
, pp.
1175
1196
.
29.
Joglekar
,
A.
,
Chen
,
H.
, and
Kara
,
L. B.
,
2023
, “
DMF-TONN: Direct Mesh-Free Topology Optimization Using Neural Networks
,”
prepint
. https://arxiv.org/abs/2305.04107
You do not currently have access to this content.