Abstract

This study aims to improve the prediction accuracy of the computer-aided engineering (CAE) model for crashworthiness performance evaluation at speeds beyond those defined by current regulations and public domain testing protocols. One way of achieving this is by integrating data from a few physical crash tests with the CAE data using machine learning models. In this study, two scenarios are investigated: (1) improving CAE model prediction accuracy using test data of a vehicle type that is the same as that of the CAE model; (2) improving CAE model prediction accuracy using test data from two different types of vehicles (e.g., two different sizes of SUVs). In the first scenario, a novel approach is proposed in the displacement domain (deceleration versus displacement) to enable data fusion to help recover the unmodeled physics in the CAE model. A nonlinear spring-mass model is used to simulate rigid-barrier vehicle frontal impact. A Gaussian process regression (GPR) model is then applied in conjunction with a Gaussian mixture model to capture the model bias of the nonlinear spring constant under a dynamic analysis scheme. In the second scenario, we propose a time-domain method (deceleration versus time) based on temporal convolutional network (TCN) and transfer learning. An initial TCN model is first trained by fusing CAE data with physical test data of the first vehicle type based on data augmentation. This data-augmented TCN model is then fine-tuned through transfer learning using CAE and test data of the second vehicle type. It leverages the domain-invariant representations of the two types of vehicles to enhance the CAE model prediction accuracy of the second vehicle type. Case studies are used to validate the proposed approaches and to demonstrate their efficacy in improving the prediction accuracy of the CAE models.

References

1.
Happian-Smith
,
J.
,
2001
,
An Introduction to Modern Vehicle Design
,
Elsevier
,
New York
.
2.
Bandi
,
P.
,
Schmiedeler
,
J. P.
, and
Tovar
,
A.
,
2013
, “
Design of Crashworthy Structures With Controlled Energy Absorption in the Hybrid Cellular Automaton Framework
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091002
.
3.
Fang
,
J.
,
Sun
,
G.
,
Qiu
,
N.
,
Kim
,
N. H.
, and
Li
,
Q.
,
2017
, “
On Design Optimization for Structural Crashworthiness and Its State of the Art
,”
Struct. Multidiscipl. Optim.
,
55
(
3
), pp.
1091
1119
.
4.
Liu
,
X.
,
Liang
,
R.
,
Hu
,
Y.
,
Tang
,
X.
,
Bastien
,
C.
, and
Zhang
,
R.
,
2021
, “
Collaborative Optimization of Vehicle Crashworthiness Under Frontal Impacts Based on Displacement Oriented Structure
,”
Int. J. Automot. Technol.
,
22
(
5
), pp.
1319
1335
.
5.
Wang
,
Q.
,
Huang
,
Z.
, and
Dong
,
J.
,
2020
, “
Reliability-Based Design Optimization for Vehicle Body Crashworthiness Based on Copula Functions
,”
Eng. Optim.
,
52
(
8
), pp.
1362
1381
.
6.
Ray
,
T.
,
Asafuddoula
,
M.
,
Singh
,
H. K.
, and
Alam
,
K.
,
2015
, “
An Approach to Identify Six Sigma Robust Solutions of Multi/Many-Objective Engineering Design Optimization Problems
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051404
.
7.
Bhattacharjee
,
K. S.
,
Singh
,
H. K.
, and
Ray
,
T.
,
2018
, “
Multiple Surrogate-Assisted Many-Objective Optimization for Computationally Expensive Engineering Design
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051403
.
8.
Rahman
,
M. H.
,
Schimpf
,
C.
,
Xie
,
C.
, and
Sha
,
Z.
,
2019
, “
A Computer-Aided Design Based Research Platform for Design Thinking Studies
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121102
.
9.
Caputo
,
F.
,
Lamanna
,
G.
,
Perfetto
,
D.
,
Chiariello
,
A.
,
Di Caprio
,
F.
, and
Di Palma
,
L.
,
2021
, “
Experimental and Numerical Crashworthiness Study of a Full-Scale Composite Fuselage Section
,”
AIAAJ
,
59
(
2
), pp.
700
718
.
10.
Olivares
,
G.
,
Acosta
,
J. F.
, and
Yadav
,
V.
, “
Certification by Analysis I and II
,”
Proc. The Joint Advanced Materials and Structures Meeting
,
Seattle, WA
,
May 19–20
.
11.
Xi
,
Z.
,
Hao
,
P.
,
Fu
,
Y.
, and
Yang
,
R.-J.
,
2014
, “
A Copula-Based Approach for Model Bias Characterization
,”
SAE Int. J. Passeng. Cars-Mech. Syst.
,
7
, pp.
781
786
.
12.
Zeng
,
J.
,
Li
,
G.
,
Gao
,
Z.
,
Li
,
Y.
,
Sundararajan
,
S.
,
Barbat
,
S.
, and
Hu
,
Z.
,
2023
, “
Machine Learning Enabled Fusion of CAE Data and Test Data for Vehicle Crashworthiness Performance Evaluation by Analysis
,”
Struct. Multidiscipl. Optim.
,
66
(
4
), p.
96
.
13.
Shi
,
L.
, and
Lin
,
S.-P.
,
2016
, “
A New RBDO Method Using Adaptive Response Surface and First-Order Score Function for Crashworthiness Design
,”
Reliab. Eng. Syst. Saf.
,
156
(
1
), pp.
125
133
.
14.
Qiu
,
N.
,
Gao
,
Y.
,
Fang
,
J.
,
Sun
,
G.
,
Li
,
Q.
, and
Kim
,
N. H.
,
2018
, “
Crashworthiness Optimization with Uncertainty From Surrogate Model and Numerical Error
,”
Thin-Walled Struct.
,
129
(
1
), pp.
457
472
.
15.
Shi
,
L.
,
Yang
,
R.-J.
, and
Zhu
,
P.
,
2014
, “
An Adaptive Response Surface Method Using Bayesian Metric and Model Bias Correction Function
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031005
.
16.
Sobester
,
A.
,
Forrester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons
,
Hoboken, NJ
.
17.
Rasmussen
,
C. E.
, and
Nickisch
,
H.
,
2010
, “
Gaussian Processes for Machine Learning (GPML) Toolbox
,”
J. Mach. Learn. Res.
,
11
(
1
), pp.
3011
3015
.
18.
McLachlan
,
G. J.
, and
Rathnayake
,
S.
,
2014
, “
On the Number of Components in a Gaussian Mixture Model
,”
Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
,
4
(
5
), pp.
341
355
.
19.
Fraley
,
C.
,
Raftery
,
A. E.
,
Murphy
,
T. B.
, and
Scrucca
,
L.
,
2012
, “mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation,” Technical Report No. 597.
20.
Zeng
,
J.
, and
Hu
,
Z.
,
2022
, “
Automated Operational Modal Analysis Using Variational Gaussian Mixture Model
,”
Eng. Struct.
,
273
(
1
), p.
115139
.
21.
Moon
,
T. K.
,
1996
, “
The Expectation-Maximization Algorithm
,”
IEEE Signal Process. Mag.
,
13
(
6
), pp.
47
60
.
22.
Blei
,
D. M.
,
Kucukelbir
,
A.
, and
McAuliffe
,
J. D.
,
2017
, “
Variational Inference: A Review for Statisticians
,”
J. Am. Stat. Assoc.
,
112
(
518
), pp.
859
877
.
23.
Vrieze
,
S. I.
,
2012
, “
Model Selection and Psychological Theory: A Discussion of the Differences Between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
,”
Psychol. Methods
,
17
(
2
), pp.
228
243
.
24.
Neal
,
R. M.
,
2000
, “
Markov Chain Sampling Methods for Dirichlet Process Mixture Models
,”
J. Comput. Graph. Stat.
,
9
(
2
), pp.
249
265
.
25.
Zhao
,
Y.
,
Jiang
,
C.
,
Vega
,
M. A.
,
Todd
,
M. D.
, and
Hu
,
Z.
,
2022
, “
Surrogate Modeling of Nonlinear Dynamic Systems: A Comparative Study
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
1
), p.
011001
.
26.
Bai
,
S.
,
Kolter
,
J. Z.
, and
Koltun
,
V.
,
2018
, “
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
,”
International Conference on Learning Representations (ICLR) Workshop
,
Vancouver, Canada
,
Apr. 30–May 3
, Vol. 1803, p.
01271
.
27.
Pan
,
S. J.
, and
Yang
,
Q.
,
2009
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
28.
Schwer
,
L. E.
,
2007
, “
An Overview of the PTC 60/V&V 10: Guide for Verification and Validation in Computational Solid Mechanics
,”
Eng. Comput.
,
23
(
4
), pp.
245
252
.
29.
Barbat
,
S.
,
Fu
,
Y.
,
Zhan
,
Z.
,
Yang
,
R.-J.
, and
Gehre
,
C.
,
2013
, “
Objective Rating Metric for Dynamic Systems
,”
23rd International Technical Conference on the Enhanced Safety of Vehicles, Seoul, South Korea
, May 27–30.
30.
NHTSA
. “Crash Simulation Vehicle Model, DYNA FE.”
You do not currently have access to this content.