Abstract

This paper discusses a framework to design elements of the plant and control systems for floating offshore wind turbines in an integrated manner using linear parameter-varying models. Multiple linearized models derived from aero-elastic simulation software in different operating regions characterized by the incoming wind speed are combined to construct an approximate low-fidelity model of the system. The combined model is then used to generate open-loop, optimal control trajectories as part of a nested control co-design strategy that explores the system’s power production and stability using the platform pitch tilt as a proxy in the context of crucial plant and control design decisions. The radial distance between the central and outer columns and the diameter of the outer columns of the semisubmersible platform are the plant design variables. The platform stability and power production are studied for different plant design decisions. The effect of plant decisions on subsequent power production and stability response of the floating wind turbine is quantified in terms of the levelized cost of energy. The results show that the inner-loop constraints and the plant design decisions affect the turbine’s power and, subsequently, the cost of the system.

References

1.
Garcia-Sanz
,
M.
,
2019
, “
Control Co-Design: An Engineering Game Changer
,”
Adv. Control Appl.: Eng. Ind. Syst.
,
1
(
1
), p.
e18
.
2.
Jonkman
,
J.
,
Wright
,
A.
,
Barter
,
G.
,
Hall
,
M.
,
Allison
,
J. T.
, and
Herber
,
D. R.
,
2021
, “
Functional Requirements for the WEIS Toolset to Enable Controls Co-Design of Floating Offshore Wind Turbines
,”
International Offshore Wind Technical Conference
, Paper No. IOWTC2021-3533.
3.
Sandner
,
F.
,
Schlipf
,
D.
,
Matha
,
D.
, and
Cheng
,
P. W.
,
2014
, “
Integrated Optimization of Floating Wind Turbine Systems
,”
International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
,
June 8–13
.
4.
Barter
,
G. E.
,
Robertson
,
A.
, and
Musial
,
W.
,
2020
, “
A Systems Engineering Vision for Floating Offshore Wind Cost Optimization
,”
Renew. Energy Focus
,
34
, pp.
1
16
.
5.
Hegseth
,
J. M.
,
Bachynski
,
E. E.
, and
Martins
,
J. R. R. A.
,
2020
, “
Design Optimization of Spar Floating Wind Turbines Considering Different Control Strategies
,”
J. Phys.: Conf. Ser.
,
1669
, p.
012010
.
6.
Fleming
,
P. A.
,
Pineda
,
I.
,
Rossetti
,
M.
,
Wright
,
A. D.
, and
Arora
,
D.
,
2014
, “
Evaluating Methods for Control of an Offshore Floating Turbine
,”
International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
,
June 8–13
.
7.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.
8.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2015
, “
Multidisciplinary Dynamic Optimization of Horizontal Axis Wind Turbine Design
,”
Struct. Multidiscip. Optim.
,
53
(
1
), pp.
15
27
.
9.
Herber
,
D. R.
,
2017
, “
Advances in Combined Architecture, Plant, and Control Design
,” Ph.D. dissertation,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
10.
Fathy
,
H. K.
,
Papalambros
,
P. Y.
,
Ulsoy
,
A. G.
, and
Hrovat
,
D.
,
2003
, “
Nested Plant/Controller Optimization With Application to Combined Passive/Active Automotive Suspensions
,”
American Control Conference
,
Denver, CO
,
June 4–6
.
11.
Nash
,
A. L.
, and
Jain
,
N.
,
2020
, “
Combined Plant and Control Co-Design for Robust Disturbance Rejection in Thermal-Fluid Systems
,”
IEEE Trans. Contr. Syst. Technol.
,
28
(
6
), pp.
2532
2539
.
12.
Gaertner
,
E.
,
Rinker
,
J.
,
Sethuraman
,
L.
,
Zahle
,
F.
,
Anderson
,
B.
,
Barter
,
G. E.
,
Abbas
,
N. J.
, et al.,
2020
, IEA Wind TCP Task 37: Definition of the IEA 15-MW Offshore Reference Wind Turbine,
Technical Report
.
13.
Zalkind
,
D. S.
,
Ananda
,
G. K.
,
Chetan
,
M.
,
Martin
,
D. P.
,
Bay
,
C. J.
,
Johnson
,
K. E.
,
Loth
,
E.
,
Griffith
,
D. T.
,
Selig
,
M. S.
, and
Pao
,
L. Y.
,
2019
, “
System-Level Design Studies for Large Rotors
,”
Wind Energy Sci.
,
4
(
4
), pp.
595
618
.
14.
Du
,
X.
,
Burlion
,
L.
, and
Bilgen
,
O.
,
2020
, “
Control Co-Design for Rotor Blades of Floating Offshore Wind Turbines
,”
ASME International Mechanical Engineering Congress and Exposition
,
Online
,
Nov. 16–19
,
American Society of Mechanical Engineers
.
15.
Muro
,
J. L.
,
Xianping Du
,
J.-P. C.
,
Bilgen
,
O.
, and
Burlion
,
L.
,
2022
, “
Wind Turbine Tower Thickness and Blade Pitch Control Co-Design Optimization
,”
AIAA SciTech 2022 Forum
,
Online
,
Jan. 3–7
.
16.
Brodrick
,
P. G.
,
Kang
,
C. A.
,
Brandt
,
A. R.
, and
Durlofsky
,
L. J.
,
2015
, “
Optimization of Carbon-Capture-Enabled Coal-Gas-Solar Power Generation
,”
Energy
,
79
, pp.
149
162
.
17.
Vercellino
,
R.
,
Markey
,
E.
,
Limb
,
B. J.
,
Pisciotta
,
M. D.
,
Huyett
,
J.
,
Garland
,
S.
,
Bandhauer
,
T.
,
Quinn
,
J. C.
,
Psarras
,
P.
, and
Herber
,
D. R.
,
2022
, “
Control Co-Design Optimization of Natural Gas Power Plants With Carbon Capture and Thermal Storage
,”
ASME International Design Engineering Technical Conferences
,
St. Louis, MO
,
Aug. 14–17
.
18.
Gros
,
S.
,
2013
, “
An Economic NMPC Formulation for Wind Turbine Control
,”
IEEE Conference on Decision and Control
,
Firenze, Italy
,
Dec. 10–13
.
19.
Ghigo
,
A.
,
Cottura
,
L.
,
Caradonna
,
R.
,
Bracco
,
G.
, and
Mattiazzo
,
G.
,
2020
, “
Platform Optimization and Cost Analysis in a Floating Offshore Wind Farm
,”
J. Mar. Sci. Eng.
,
8
(
11
), p.
835
.
20.
Kikuchi
,
Y.
, and
Ishihara
,
T.
,
2019
, “
Upscaling and Levelized Cost of Energy for Offshore Wind Turbines Supported by Semi-Submersible Floating Platforms
,”
J. Phys.: Conf. Ser.
,
1356
, p.
012033
.
21.
Musial
,
W. D.
,
Beiter
,
P. C.
,
Spitsen
,
P.
,
Nunemaker
,
J.
, and
Gevorgian
,
V.
,
2019
, 2018 Offshore Wind Technologies Market Report, Technical Report.
22.
Skaare
,
B.
,
Hanson
,
T. D.
, and
Nielsen
,
F. G.
,
2007
, “
Importance of Control Strategies on Fatigue Life of Floating Wind Turbines
,”
ASME International Conference on Offshore Mechanics and Arctic Engineering
,
San Diego, CA
,
June 10–15
.
23.
Ennis
,
B. L.
, and
Griffith
,
D. T.
,
2018
, System Levelized Cost of Energy Analysis for Floating Offshore Vertical-Axis Wind Turbines,
Technical Report
.
24.
Iori
,
J.
,
McWilliam
,
M. K.
, and
Stolpe
,
M.
,
2022
, “
Including the Power Regulation Strategy in Aerodynamic Optimization of Wind Turbines for Increased Design Freedom
,”
Wind Energy
,
25
(
10
), pp.
1791
1811
.
25.
Johannessen
,
M.
,
2018
, “
Concept Study and Design of Floating Offshore Wind Turbine Support Structure
,” Degree Project,
KTH Royal Institute of Technology
,
Stockholm, Sweden
.
26.
Hopstad
,
A. L. H.
,
Argyriadis
,
K.
,
Manjock
,
A.
,
Goldsmith
,
J.
, and
Ronold
,
K. O.
,
2018
, “
DNV GL Standard for Floating Wind Turbines
,”
ASME International Offshore Wind Technical Conference
.
27.
Pao
,
L. Y.
,
Zalkind
,
D. S.
,
Griffith
,
D. T.
,
Chetan
,
M.
,
Selig
,
M. S.
,
Ananda
,
G. K.
,
Bay
,
C. J.
,
Stehly
,
T.
, and
Loth
,
E.
,
2021
, “
Control Co-Design of 13 MW Downwind Two-Bladed Rotors to Achieve 25% Reduction in Levelized Cost of Wind Energy
,”
Annu. Rev. Control
,
51
, pp.
331
343
.
28.
Zhao
,
Z.
,
Wang
,
W.
,
Han
,
D.
,
Shi
,
W.
,
Si
,
Y.
, and
Li
,
X.
,
2021
, “
Structural Control of an Ultra-Large Semi-Submersible Floating Offshore Wind Turbine
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
3
), p.
032004
.
29.
Jonkman
,
J. M.
, and
Matha
,
D.
,
2011
, “
Dynamics of Offshore Floating Wind Turbines-Analysis of Three Concepts
,”
Wind Energy
,
14
(
4
), pp.
557
569
.
30.
Robertson
,
A. N.
, and
Jonkman
,
J. M.
,
2011
, “
Loads Analysis of Several Offshore Floating Wind Turbine Concepts
,”
International Society of Offshore and Polar Engineers Conference
,
Maui, HI
,
June 19-24
https://www.osti.gov/biblio/1029026.
31.
Thiagarajan
,
K. P.
, and
Dagher
,
H. J.
,
2014
, “
A Review of Floating Platform Concepts for Offshore Wind Energy Generation
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
2
), p.
020903
.
32.
Butterfield
,
S.
,
Musial
,
W.
,
Jonkman
,
J.
, and
Sclavounos
,
P.
,
2005
, “
Engineering Challenges for Floating Offshore Wind Turbines
,”
Copenhagen Offshore Wind Conference
,
Copenhagen, Denmark
,
Oct. 26–28
https://www.osti.gov/biblio/917212.
33.
Subbulakshmi
,
A.
,
Verma
,
M.
,
Keerthana
,
M.
,
Sasmal
,
S.
,
Harikrishna
,
P.
, and
Kapuria
,
S.
,
2022
, “
Recent Advances in Experimental and Numerical Methods for Dynamic Analysis of Floating Offshore Wind Turbines — An Integrated Review
,”
Renew. Sust. Energy Rev.
,
164
, p.
112525
.
34.
Musial
,
W.
,
2007
, Semi-Submersible Platform and Anchor Foundation Systems for Wind Turbine Support: Aug. 30, 2004–May 31, 2005,
Technical Report
.
35.
DNV, 2013. Design of Offshore Wind Turbine Structures, Technical Report.
36.
Pao
,
L. Y.
, and
Johnson
,
K. E.
,
2009
, “
A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms
,”
American Control Conference
,
St. Louis, MO
,
June 10–12
.
37.
Moriarty
,
P. J.
, and
Butterfield
,
S. B.
,
2009
, “
Wind Turbine Modeling Overview for Control Engineers
,”
American Control Conference
,
St. Louis, MO
,
June 10–12
.
38.
Abbas
,
N. J.
,
Zalkind
,
D. S.
,
Pao
,
L.
, and
Wright
,
A.
,
2021
, “
A Reference Open-Source Controller for Fixed and Floating Offshore Wind Turbines
,”
Wind Energy Sci.
,
7
(
1
), pp.
53
73
.
39.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
A Problem Class With Combined Architecture, Plant, and Control Design Applied to Vehicle Suspensions
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101401
.
40.
Chen
,
J.
, and
Kim
,
M.-H.
,
2021
, “
Review of Recent Offshore Wind Turbine Research and Optimization Methodologies in Their Design
,”
J. Mar. Sci. Eng.
,
10
(
1
), p.
28
.
41.
Hall
,
M.
,
Buckham
,
B.
, and
Crawford
,
C.
,
2014
, “
Hydrodynamics-Based Floating Wind Turbine Support Platform Optimization: A Basis Function Approach
,”
Renew. Energy
,
66
, pp.
559
569
.
42.
Lemmer
,
F.
,
2018
, “
Low-Order Modeling, Controller Design and Optimization of Floating Offshore Wind Turbines
,”
Dissertation
.
43.
Dou
,
S.
,
Pegalajar-Jurado
,
A.
,
Wang
,
S.
,
Bredmose
,
H.
, and
Stolpe
,
M.
,
2020
, “
Optimization of Floating Wind Turbine Support Structures Using Frequency-Domain Analysis and Analytical Gradients
,”
J. Phys: Conf. Ser.
,
1618
(
4
), p.
042028
.
44.
Faraggiana
,
E.
,
Sirigu
,
M.
,
Ghigo
,
A.
,
Bracco
,
G.
, and
Mattiazzo
,
G.
,
2022
, “
An Efficient Optimisation Tool for Floating Offshore Wind Support Structures
,”
Energy Rep.
,
8
, pp.
9104
9118
.
45.
Smilden
,
E.
,
Horn
,
J.-T. H.
,
Sørensen
,
A. J.
, and
Amdahl
,
J.
,
2016
, “
Reduced Order Model for Control Applications in Offshore Wind Turbines
,”
IFAC-PapersOnLine
,
49
(
23
), pp.
386
393
.
46.
Pereira
,
H.
,
Cupertino
,
A.
,
Teodorescu
,
R.
, and
Silva
,
S.
,
2014
, “
High Performance Reduced Order Models for Wind Turbines With Full-Scale Converters Applied on Grid Interconnection Studies
,”
Energies
,
7
(
11
), pp.
7694
7716
.
47.
Jonkman
,
J. M.
, and
Jonkman
,
B. J.
,
2016
, “
FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization
,”
J. Phys.: Conf. Ser.
,
753
, p.
082010
.
48.
Jonkman
,
J.
,
Wright
,
A. D.
,
Hayman
,
G.
, and
Robertson
,
A. N.
,
2018
, Full-System Linearization for Floating Offshore Wind Turbines in OpenFAST: Preprint. Technical Report.
49.
van Wingerden
,
J. W.
,
Houtzager
,
I.
,
Felici
,
F.
, and
Verhaegen
,
M.
,
2009
, “
Closed-Loop Identification of the Time-Varying Dynamics of Variable-Speed Wind Turbines
,”
Int. J. Robust Nonlinear Contr.
,
19
(
1
), pp.
4
21
.
50.
Bianchi
,
F.
,
Mantz
,
R.
, and
Christiansen
,
C.
,
2005
, “
Gain Scheduling Control of Variable-Speed Wind Energy Conversion Systems Using Quasi-LPV Models
,”
Control Eng. Pract.
,
13
(
2
), pp.
247
255
.
51.
Lescher
,
F.
,
Zhao
,
J. Y.
, and
Martinez
,
A.
,
2006
, “
Multiobjective H2/H Control of a Pitch Regulated Wind Turbine for Mechanical Load Reduction
,”
Renew. Energy Power Qual. J.
,
1
(
04
), pp.
100
105
.
52.
Martin
,
D. P.
,
Johnson
,
K. E.
,
Zalkind
,
D. S.
, and
Pao
,
L. Y.
,
2017
, “
LPV-Based Torque Control for an Extreme-Scale Morphing Wind Turbine Rotor
,”
American Control Conference
,
Seattle, WA
,
May 24–26
,
IEEE
.
53.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2018
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Control Design Problems
,”
ASME J. Mech. Des.
,
141
(
1
), p.
011402
.
54.
Sundarrajan
,
A. K.
, and
Herber
,
D. R.
,
2021
, “
Towards a Fair Comparison Between the Nested and Simultaneous Control Co-Design Methods Using an Active Suspension Case Study
,”
American Control Conference
,
Online
,
May 25–28
.
55.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2019
, “
Reliability-Based MDSDO for Co-Design of Stochastic Dynamic Systems
,”
International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 11–14
.
56.
Herber
,
D. R.
, and
Sundarrajan
,
A. K.
,
2020
, “
On the Uses of Linear-Quadratic Methods in Solving Nonlinear Dynamic Optimization Problems With Direct Transcription
,”
ASME International Mechanical Engineering Congress & Exposition
,
Virtual Online
,
Nov. 16–19
.
57.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2017
, “
Design of Dynamic Systems Using Surrogate Models of Derivative Functions
,”
ASME J. Mech. Des.
,
139
(
10
), p.
101402
.
58.
Deshmukh
,
A. P.
,
Herber
,
D. R.
, and
Allison
,
J. T.
,
2015
, “
Bridging the Gap Between Open-Loop and Closed-Loop Control in Co-Design: A Framework for Complete Optimal Plant and Control Architecture Design
,”
American Control Conference
,
Chicago, IL
,
July 1–3
, pp.
4916
4922
.
59.
Betts
,
J. T.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
,
SIAM
.
60.
Biegler
,
L. T.
,
2010
,
Nonlinear Programming Concepts, Algorithms, and Applications to Chemical Processes
,
SIAM
.
61.
WEIS. (online, version f71b530), https://github.com/WISDEM/WEIS.
62.
63.
IEA-15-240-RWT. (online, version 9aa6ce4), https://github.com/IEAWindTask37/IEA-15-240-RWT.
64.
Allen
,
C.
,
Viscelli
,
A.
,
Dagher
,
H.
,
Goupee
,
A.
,
Gaertner
,
E.
,
Abbas
,
N.
,
Hall
,
M.
, and
Barter
,
G.
,
2020
, Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-MW Offshore Reference Wind Turbine,
Technical Report
.
65.
Theis
,
J.
,
2021
, Quality Guidelines for Energy Systems Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance—Feb. 2021,
Technical Report
.
66.
Short
,
W.
,
Packey
,
D.
, and
Holt
,
T.
,
1995
, A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies,
Technical Report
.
67.
WISDEM. (online, version 52d0b88), https://github.com/WISDEM/WISDEM.
68.
Fingersh
,
L.
,
Hand
,
M.
, and
Laxson
,
A.
,
2006
, Wind Turbine Design Cost and Scaling Model, Technical Report.
69.
Malcolm
,
D. J.
, and
Hansen
,
A. C.
,
2006
, WindPACT Turbine Rotor Design Study: June 2000–June 2002 (revised), Technical Report.
70.
Stehly
,
T.
, and
Duffy
,
P.
,
2021
, 2020 Cost of Wind Energy Review, Technical Report, NREL/TP-5000-81209, National Renewable Energy Laboratory.
71.
Mowers
,
M.
, and
Mai
,
T.
,
2021
, “
An Evaluation of Electricity System Technology Competitiveness Metrics: The Case for Profitability
,”
Electr. J.
,
34
(
4
), p.
106931
.
72.
Garcia-Sanz
,
M.
,
2019
, “
A Metric Space With LCOE Isolines for Research Guidance in Wind and Hydrokinetic Energy Systems
,”
Wind Energy
,
23
(
2
), pp.
291
311
.
73.
DNV, 2016. Loads and Site Conditions for Wind Turbines, Standard DNV-ST-0437.
74.
Herber
,
D. R.
,
2014
, “Dynamic System Design Optimization of Wave Energy Converters Utilizing Direct Transcription”. M.S. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
75.
The DTQP Project. (online, version 0069e01), https://github.com/danielrherber/dt-qp-project.
You do not currently have access to this content.