Abstract

There is a growing demand for sustainable products and systems. Sustainability encompasses environmental, social, and economic aspects, often referred to as the three pillars of sustainability. To make more sustainable design decisions, engineers need tools to predict the environmental, social, and economic impacts of products and characterize potential sustainability tradeoffs. To predict the total impact of a product, the quantity of functional units of the product in society and the impact of each product needs to be estimated. This article uses agent-based modeling (ABM), combined with tools such as life cycle assessment (LCA), to predict impacts across all three pillars of sustainability. By using the product impact results, the multidimensional sustainability tradespace can be characterized. The approach described in this article is based on three main components for the predictive modeling of product impacts and the characterization of the sustainability trade space: (i) ABM of product adoption, (ii) the assessment of product impacts, and (iii) an approach for the characterization of product sustainability tradeoffs at the population level. The tradespace characterization uses a Pareto-based method presented visually to find the nondominated solutions in the product impact space. To illustrate and describe how to use the method, a case study is presented that predicts the impact of residential solar panels in a region of the United States under various scenarios. The findings of the case study can help policy makers understand suitable implementation strategies for residential solar panels while considering the impact tradeoffs involved.

References

1.
United Nations
,
2019
, “
Annex: Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development
,” Technical Report,
New York
.
2.
Purvis
,
B.
,
Mao
,
Y.
, and
Robinson
,
D.
,
2019
, “
Three Pillars of Sustainability: In Search of Conceptual Origins
,”
Sustainability Sci.
,
14
(
3
), pp.
681
695
.
3.
Norman
,
W.
, and
MacDonald
,
C.
,
2004
, “
Getting to the Bottom of “Triple Bottom Line
,”
Business Ethics Quarterly: J. Soc. Business Ethics
,
14
(
2
), pp.
243
262
.
4.
Luthin
,
A.
,
Backes
,
J. G.
, and
Traverso
,
M.
,
2021
, “
A Framework to Identify Environmental-Economic Tradeoffs by Combining Life Cycle Assessment and Life Cycle Costing—A Case Study of Aluminium Production
,”
J. Cleaner. Prod.
,
321
(
128902
), p.
128902
.
5.
Oláh
,
J.
,
Kitukutha
,
N.
,
Haddad
,
H.
,
Pakurár
,
M.
,
Máté
,
D.
, and
Popp
,
J.
,
2018
, “
Achieving Sustainable E-Commerce in Environmental, Social and Economic Dimensions by Taking Possible Trade-Offs
,”
Sustainability: Sci. Practice Policy
,
11
(
1
), p.
89
.
6.
Sovacool
,
B. K.
,
2021
, “
When Subterranean Slavery Supports Sustainability Transitions? Power, Patriarchy, and Child Labor in Artisanal Congolese Cobalt Mining
,”
Extractive Indus. Soc.
,
8
(
1
), pp.
271
293
.
7.
Schöggl
,
J.-P.
,
Baumgartner
,
R. J.
, and
Hofer
,
D.
,
2017
, “
Improving Sustainability Performance in Early Phases of Product Design: A Checklist for Sustainable Product Development Tested in the Automotive Industry
,”
J. Cleaner. Prod.
,
140
(
Part 3
), pp.
1602
1617
.
8.
Guinée
,
J. B.
,
Heijungs
,
R.
,
Huppes
,
G.
,
Zamagni
,
A.
,
Masoni
,
P.
,
Buonamici
,
R.
,
Ekvall
,
T.
, and
Rydberg
,
T.
,
2011
, “
Life Cycle Assessment: Past, Present, and Future
,”
Environ. Sci. Technol.
,
45
(
1
), pp.
90
96
.
9.
Huertas-Valdivia
,
I.
,
Ferrari
,
A. M.
,
Settembre-Blundo
,
D.
, and
García-Muiña
,
F. E.
,
2020
, “
Social Life-Cycle Assessment: A Review by Bibliometric Analysis
,”
Sustainability: Sci. Practice Policy
,
12
(
15
), p.
6211
.
10.
De Risi
,
R.
,
De Paola
,
F.
,
Turpie
,
J.
, and
Kroeger
,
T.
,
2018
, “
Life Cycle Cost and Return on Investment as Complementary Decision Variables for Urban Flood Risk Management in Developing Countries
,”
Inter. J. Disaster Risk Red.
,
28
, pp.
88
106
.
11.
Walter Kloepffer
,
2008
, “
Life Cycle Sustainability Assessment of Products
,”
Inter. J. Life Cycle Assessment
,
13
(
2
), p.
89
.
12.
Liechty
,
J. C.
,
Mabey
,
C. S.
,
Mattson
,
C. A.
,
Salmon
,
J. L.
, and
Weaver
,
J. M.
,
2023
, “
Trade-off Characterization Between Social and Environmental Impacts Using Agent-Based Product Adoption Models and Life Cycle Assessment
,”
ASME J. Mech. Des.
,
145
(
3
), p.
032001
.
13.
Sigrin
,
B.
,
Gleason
,
M.
,
Preus
,
R.
,
Baring-Gould
,
I.
, and
Margolis
,
R.
,
2016
, “Distributed Generation Market Demand Model (dgen): Documentation,
National Renewable Energy Lab. (NREL)
,
Golden, CO
, Technical Report No. NREL/TP-6A20-65231.
14.
Vicsek
,
T.
,
2002
, “
Complexity: The Bigger Picture
,”
Nature
,
418
(
6894
), p.
131
.
15.
Bonabeau
,
E.
,
2002
, “
Agent-Based Modeling: Methods and Techniques for Simulating Human Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
99
(
Suppl. 3
), pp.
7280
7287
.
16.
Schelling
,
T. C.
,
1971
, “
Dynamic Models of Segregation
,”
J. Math. Soc.
,
1
(
2
), pp.
143
186
.
17.
Koutiva
,
I.
, and
Makropoulos
,
C.
,
2017
, “
Exploring the Effects of Domestic Water Management Measures to Water Conservation Attitudes Using Agent Based Modelling
,”
Water Sci. Technology: Water Supply
,
17
(
2
), pp.
552
560
.
18.
Tseng
,
S.-H.
,
Chen
,
C.-K.
,
Yu
,
J.-C.
, and
Wang
,
Y.-C.
,
2014
, “
Applying the Agent-Based Social Impact Theory Model to the Bullying Phenomenon in K-12 Classrooms
,”
Simulation
,
90
(
4
), pp.
425
437
.
19.
Christensen
,
C.
, and
Salmon
,
J.
,
2020
, “
An Agent-Based Modeling Approach for Simulating the Impact of Small Unmanned Aircraft Systems on Future Battlefields
,”
J. Def. Model. Simul.
,
19
(
3
), p.
1548512920963904
.
20.
Lapp
,
S.
,
Jablokow
,
K.
, and
McComb
,
C.
,
2019
, “
KABOOM: An Agent-Based Model for Simulating Cognitive Style in Team Problem Solving
,”
Design Sci.
,
5
(
E13
), pp.
1
32
.
21.
Squazzoni
,
F.
,
2010
, “The Impact of Agent-Based Models in the Social Sciences After 15 Years of Incursions,”
History of Economic Ideas
, Vol.
Vol. 18
,
F.
Serra
, ed.,
Accademia Editoriale
,
Rome
, pp.
197
233
.
22.
Kiesling
,
E.
,
Günther
,
M.
,
Stummer
,
C.
, and
Wakolbinger
,
L. M.
,
2012
, “
Agent-Based Simulation of Innovation Diffusion: A Review
,”
Central European J. Operations Res.
,
20
(
2
), pp.
183
230
.
23.
Rai
,
V.
, and
Robinson
,
S. A.
,
2015
, “
Agent-Based Modeling of Energy Technology Adoption: Empirical Integration of Social, Behavioral, Economic, and Environmental Factors
,”
Environ. Model. Software
,
70
, pp.
163
177
.
24.
Mabey
,
C. S.
,
Mattson
,
C. A.
, and
Salmon
,
J. L.
,
2023
, “
Agent-Based Product-Social-Impact-Modeling: A Systematic Literature Review and Modeling Process
,”
ASME J. Mech. Des.
,
145
(
11
), p.
110801
.
25.
Mabey
,
C. S.
,
Armstrong
,
A. G.
,
Mattson
,
C. A.
,
Salmon
,
J. L.
,
Hatch
,
N. W.
, and
Dahlin
,
E. C.
,
2021
, “
A Computational Simulation-Based Framework for Estimating Potential Product Impact During Product Design
,”
Design Sci.
,
7
, p.
e15
.
26.
Widyawati
,
L.
,
2020
, “
A Systematic Literature Review of Socially Responsible Investment and Environmental Social Governance Metrics
,”
Business Strategy Environ.
,
29
(
2
), pp.
619
637
.
27.
Diez-Busto
,
E.
,
Sanchez-Ruiz
,
L.
, and
Fernandez-Laviada
,
A.
,
2021
, “
The B Corp Movement: A Systematic Literature Review
,”
Sustainability: Sci. Practice Policy
,
13
(
5
), p.
2508
.
28.
Visentin
,
C.
,
Trentin
,
A. W. d. S.
,
Braun
,
A. B.
, and
Thomé
,
A.
,
2020
, “
Life Cycle Sustainability Assessment: A Systematic Literature Review Through the Application Perspective, Indicators, and Methodologies
,”
J. Cleaner. Prod.
,
270
, p.
122509
.
29.
Vezzoli
,
C.
,
2018
, “Estimating the Environmental Impact of Products: Life Cycle Assessment,”
Design for Environmental Sustainability: Life Cycle Design of Products
,
Springer London
,
London
, pp.
213
237
.
30.
Klöpffer
,
W.
,
1997
, “
Life Cycle Assessment: From the Beginning to the Current State
,”
Environ. Sci. Pollution Res. Inter.
,
4
(
4
), pp.
223
228
.
31.
Finkbeiner
,
M.
,
Inaba
,
A.
,
Tan
,
R.
,
Christiansen
,
K.
, and
Klüppel
,
H.-J.
,
2006
, “
The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044
,”
Inter. J. Life Cycle Assessment
,
11
(
2
), pp.
80
85
.
32.
Bulle
,
C.
,
Margni
,
M.
,
Patouillard
,
L.
,
Boulay
,
A.-M.
,
Bourgault
,
G.
,
De Bruille
,
V.
,
Cao
,
V.
, et al.,
2019
, “
IMPACT World+: A Globally Regionalized Life Cycle Impact Assessment Method
,”
Inter. J. Life Cycle Assess.
,
24
(
9
), pp.
1653
1674
.
33.
Huijbregts
,
M. A. J.
,
Steinmann
,
Z. J. N.
,
Elshout
,
P. M. F.
,
Stam
,
G.
,
Verones
,
F.
,
Vieira
,
M.
,
Zijp
,
M.
,
Hollander
,
A.
, and
van Zelm
,
R.
,
2017
, “
ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method At Midpoint and Endpoint Level
,”
Inter. J. Life Cycle Assess.
,
22
(
2
), pp.
138
147
.
34.
Walzberg
,
J.
,
Dandres
,
T.
,
Merveille
,
N.
,
Cheriet
,
M.
, and
Samson
,
R.
,
2019
, “
Assessing Behavioural Change with Agent-Based Life Cycle Assessment: Application to Smart Homes
,”
Renewable. Sustainable. Energy. Rev.
,
111
, pp.
365
376
.
35.
Querini
,
F.
, and
Benetto
,
E.
,
2015
, “
Combining Agent-Based Modeling and Life Cycle Assessment for the Evaluation of Mobility Policies
,”
Environ. Sci. Technol.
,
49
(
3
), pp.
1744
1751
.
36.
Finkbeiner
,
M.
,
Schau
,
E. M.
,
Lehmann
,
A.
, and
Traverso
,
M.
2010
, “
Towards Life Cycle Sustainability Assessment
,”
Sustainability: Sci. Practice Policy
,
2
(
10
), pp.
3309
3322
.
37.
Wood
,
R.
, and
Hertwich
,
E. G.
,
2013
, “
Economic Modelling and Indicators in Life Cycle Sustainability Assessment
,”
Inter. J. Life Cycle Assess.
,
18
(
9
), pp.
1710
1721
.
38.
Burdge
,
R. J.
,
2015
,
A Community Guide to Social Impact Assessment
, 4th ed.,
Social Ecology Press
,
Huntsville
.
39.
Fontes
,
J.
,
Gaasbeek
,
A.
,
Goedkoop
,
M.
,
Contreras
,
S.
, and
Evitts
,
S.
,
2016
,
Handbook for Product Social Impact Assessment 3.0.
,
PRé Sustainability, Amersfoort, Netherlands.
40.
Benoît
,
C.
,
Norris
,
G. A.
,
Valdivia
,
S.
,
Ciroth
,
A.
,
Moberg
,
A.
,
Bos
,
U.
,
Prakash
,
S.
,
Ugaya
,
C.
, and
Beck
,
T.
,
2010
, “
The Guidelines for Social Life Cycle Assessment of Products: Just in Time!
,”
Inter. J. Life Cycle Assess.
,
15
(
2
), pp.
156
163
.
41.
Stevenson
,
P. D.
,
Mattson
,
C. A.
,
Bryden
,
K. M.
, and
Maccarty
,
N. A.
,
2018
, “
Toward a Universal Social Impact Metric for Engineered Products that Alleviate Poverty
,”
J. Mech. Des.
,
140
(
4
), p.
041404
.
42.
Stevenson
,
P. D.
,
Mattson
,
C. A.
, and
Dahlin
,
E. C.
,
2020
, “
A Method for Creating Product Social Impact Models of Engineered Products
,”
J. Mech. Des.
,
142
(
4
), p.
041101
.
43.
Corona
,
B.
, and
San Miguel
,
G.
,
2019
, “
Life Cycle Sustainability Analysis Applied to an Innovative Configuration of Concentrated Solar Power
,”
Inter. J. Life Cycle Assess.
,
24
(
8
), pp.
1444
1460
.
44.
Kabayo
,
J.
,
Marques
,
P.
,
Garcia
,
R.
, and
Freire
,
F.
,
2019
, “
Life-Cycle Sustainability Assessment of Key Electricity Generation Systems in Portugal
,”
Energy
,
176
, pp.
131
142
.
45.
Mattson
,
C. A.
,
Pack
,
A. T.
,
Lofthouse
,
V.
, and
Bhamra
,
T.
,
2019
, “
Using a Product’s Sustainability Space as a Design Exploration Tool
,”
Design Sci.
,
5
, p.
e1
.
46.
Aruldoss
,
M.
,
Lakshmi
,
T. M.
, and
Venkatesan
,
V. P.
,
2013
, “
A Survey on Multi Criteria Decision Making Methods and Its Applications
,”
Healthcare Inform. Manage.: J. Healthcare Inform. Manage. Syst. Soc. Am. Hospital Assoc.
,
1
(
1
), pp.
31
43
.
47.
Mattson
,
C. A.
,
Mullur
,
A. A.
, and
Messac
,
A.
,
2004
, “
Smart Pareto Filter: Obtaining a Minimal Representation of Multiobjective Design Space
,”
Eng. Optim.
,
36
(
6
), pp.
721
740
.
48.
Unal
,
M.
,
Warn
,
G. P.
, and
Simpson
,
T. W.
,
2017
, “
Quantifying the Shape of Pareto Fronts During Multi-Objective Trade Space Exploration
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021402
.
49.
Dobos
,
A. P.
,
2014
,
PVWatts version 5 manual
,
National Renewable Energy Lab
,
Golden, CO
.
50.
Jordan
,
D. C.
,
Kurtz
,
S. R.
,
VanSant
,
K.
, and
Newmiller
,
J.
,
2016
, “
Compendium of Photovoltaic Degradation Rates
,”
Progress in Photovoltaics: Res. Appl.
,
24
(
7
), pp.
978
989
.
51.
Bass
,
F. M.
,
1969
, “
A New Product Growth for Model Consumer Durables
,”
Manage. Sci.
,
15
(
5
), pp.
215
227
.
52.
Mahajan
,
V.
,
Muller
,
E.
, and
Bass
,
F. M.
,
1990
, “
New Product Diffusion Models in Marketing: A Review and Directions for Research
,”
J. Market.
,
54
(
1
), pp.
1
26
.
53.
Sigrin
,
B.
,
Kwasnik
,
T.
,
Spitsen
,
P.
,
Fickling
,
M.
,
Jarzomski
,
K.
, and
Boedecker
,
E.
,
2018
, “
Market and Modeling Uncertainty in Distributed Solar Deployment Projections: A Multi-model Comparison
,”
National Renewable Energy Laboratory (NREL)
,
Golden, CO
, Technical Report No. NREL/TP-6A20-70902.
54.
Klöpffer
,
W.
, and
Grahl
,
B.
,
2014
,
Life Cycle Assessment (LCA): A Guide to Best Practice
,
John Wiley & Sons
,
Hoboken, NJ
.
55.
Guinée
,
J. B.
,
2002
,
Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards
,
Springer Science & Business Media
New York
.
56.
Rainock
,
M.
,
Everett
,
D.
,
Pack
,
A.
,
Dahlin
,
E. C.
, and
Mattson
,
C. A.
,
2018
, “
The Social Impacts of Products: A Review
,”
Impact Assess. Project Appraisal
,
36
(
3
), pp.
230
241
.
57.
Milousi
,
M.
,
Souliotis
,
M.
,
Arampatzis
,
G.
, and
Papaefthimiou
,
S.
,
2019
, “
Evaluating the Environmental Performance of Solar Energy Systems Through a Combined Life Cycle Assessment and Cost Analysis
,”
Sustainability: Sci. Practice Policy
,
11
(
9
), p.
2539
.
58.
Li
,
T.
,
Roskilly
,
A. P.
, and
Wang
,
Y.
,
2018
, “
Life Cycle Sustainability Assessment of Grid-Connected Photovoltaic Power Generation: A Case Study of Northeast England
,”
Appl. Energy.
,
227
, pp.
465
479
.
59.
Bonilla-Alicea
,
R. J.
, and
Fu
,
K.
,
2022
, “
Social Life-Cycle Assessment (S-LCA) of Residential Rooftop Solar Panels Using Challenge-Derived Framework
,”
Energy, Sustainability Soc.
,
12
(
1
), p.
7
.
60.
Interstate Renewable Energy Council
,
2022
, “
National Solar Jobs Census 2021
,” Technical Report,
Interstate Renewable Energy Council
,
New York
.
61.
Ren
,
J.
, and
Toniolo
,
S.
,
2019
,
Life Cycle Sustainability Assessment for Decision-Making: Methodologies and Case Studies
,
Elsevier
,
Amsterdam
.
62.
IEA
,
2020
, “Projected Costs of Generating Electricity, Techncal Report,
IEA
,
Paris, France
.
63.
National Renewable Energy Laboratory
,
2022
, “
Annual Technology Baseline
,” Technical Report,
National Renewable Energy Laboratory
,
Golden, CO
.
64.
Rapa
,
M.
,
Gobbi
,
L.
, and
Ruggieri
,
R.
,
2020
, “
Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources
,”
Energies
,
13
(
23
), p.
6292
.
You do not currently have access to this content.