Abstract

This article presents a comprehensive study that focuses on the techno-economic analysis of co-located wind and hydrogen energy integration within an integrated energy system (IES). The research investigates four distinct cases, each exploring various configurations of wind farms, electrolyzers, batteries, hydrogen storage tanks, and fuel cells. To obtain optimal results, the study employs a sophisticated mathematical optimization model formulated as a mixed-integer linear program. This model helps determine the most suitable component sizes and hourly energy scheduling patterns. The research utilizes historical meteorological data and wholesale market prices from diverse regions as inputs, enhancing the study’s applicability and relevance across different geographical locations. Moreover, sensitivity analyses are conducted to assess the impact of hydrogen prices, regional wind profiles, and potential future fluctuations in component prices. These analyses provide valuable insights into the robustness and flexibility of the proposed IES configurations under varying market conditions and uncertainties. The findings reveal cost-effective system configurations, strategic component selections, and implications of future energy scenarios. Specifically comparing to configurations that only have wind and battery combinations, we find that incorporating an electrolyzer results in a 7% reduction in the total cost of the IES, and utilizing hydrogen as the storage medium for fuel cells leads to a 26% cost reduction. Additionally, the IES with hybrid hydrogen and battery energy storage achieves even higher and stable power output. This research facilitates decision-making, risk mitigation, and optimized investment strategies, fostering sustainable planning for a resilient and environmentally friendly energy future.

References

1.
Li
,
H.
,
Kiviluoma
,
J.
, and
Zhang
,
J.
,
2023
, “
Techno-economic Analysis for Co-located Solar and Hydrogen Plants
,”
2023 19th International Conference on the European Energy Market (EEM)
,
Lappeenranta, Finland
,
June 6–8
,
IEEE
, pp.
1
6
.
2.
Agreement
,
P.
,
2015
, “
Paris Agreement
,”
Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris)
,
Paris, France
,
December
.
HeinOnline
, Vol. 4, p.
2017
.
3.
Herbert
,
G. J.
,
Iniyan
,
S.
,
Sreevalsan
,
E.
, and
Rajapandian
,
S.
,
2007
, “
A Review of Wind Energy Technologies
,”
Renewable Sustainable Energy Rev.
,
11
(
6
), pp.
1117
1145
.
4.
IEA
, “
Wind
,” https://www.iea.org/energy-system/renewables/wind, Accessed July 24, 2023.
5.
Lin
,
H.
,
Wu
,
Q.
,
Chen
,
X.
,
Yang
,
X.
,
Guo
,
X.
,
Lv
,
J.
,
Lu
,
T.
,
Song
,
S.
, and
McElroy
,
M.
,
2021
, “
Economic and Technological Feasibility of Using Power-to-Hydrogen Technology Under Higher Wind Penetration in China
,”
Renew. Energy
,
173
, pp.
569
580
.
6.
Badakhshan
,
S.
,
Senemmar
,
S.
,
Li
,
H.
, and
Zhang
,
J.
,
2022
, “
Integrating Offshore Wind Farms With Unmanned Hydrogen and Battery Ships
,”
2022 IEEE Kansas Power and Energy Conference (KPEC)
,
Manhattan, KS
,
Apr. 25–26
,
IEEE
, pp.
1
6
.
7.
Feng
,
C.
,
Cui
,
M.
,
Hodge
,
B.-M.
, and
Zhang
,
J.
,
2017
, “
A Data-Driven Multi-model Methodology With Deep Feature Selection for Short-Term Wind Forecasting
,”
Appl. Energy
,
190
, pp.
1245
1257
.
8.
Sun
,
M.
,
Feng
,
C.
,
Chartan
,
E. K.
,
Hodge
,
B.-M.
, and
Zhang
,
J.
,
2019
, “
A Two-Step Short-Term Probabilistic Wind Forecasting Methodology Based on Predictive Distribution Optimization
,”
Appl. Energy
,
238
, pp.
1497
1505
.
9.
Barra
,
P.
,
De Carvalho
,
W.
,
Menezes
,
T.
,
Fernandes
,
R.
, and
Coury
,
D.
,
2021
, “
A Review on Wind Power Smoothing Using High-Power Energy Storage Systems
,”
Renew. Sustainable Energy Rev.
,
137
, p.
110455
.
10.
Howlader
,
A. M.
,
Urasaki
,
N.
,
Yona
,
A.
,
Senjyu
,
T.
, and
Saber
,
A. Y.
,
2013
, “
A Review of Output Power Smoothing Methods for Wind Energy Conversion Systems
,”
Renew. Sustainable Energy Rev.
,
26
, pp.
135
146
.
11.
Qais
,
M. H.
,
Hasanien
,
H. M.
, and
Alghuwainem
,
S.
,
2020
, “
Output Power Smoothing of Wind Power Plants Using Self-tuned Controlled Smes Units
,”
Electr. Power Syst. Res.
,
178
, p.
106056
.
12.
Khalid
,
M.
, and
Savkin
,
A. V.
,
2010
, “
A Model Predictive Control Approach to the Problem of Wind Power Smoothing With Controlled Battery Storage
,”
Renew. Energy
,
35
(
7
), pp.
1520
1526
.
13.
Diaz-Gonzalez
,
F.
,
Bianchi
,
F. D.
,
Sumper
,
A.
, and
Gomis-Bellmunt
,
O.
,
2013
, “
Control of a Flywheel Energy Storage System for Power Smoothing in Wind Power Plants
,”
IEEE Trans. Energy Convers.
,
29
(
1
), pp.
204
214
.
14.
Li
,
X.
,
Hui
,
D.
, and
Lai
,
X.
,
2013
, “
Battery Energy Storage Station (BESS)-Based Smoothing Control of Photovoltaic (PV) and Wind Power Generation Fluctuations
,”
IEEE Trans. Sustainable Energy
,
4
(
2
), pp.
464
473
.
15.
Dinglin
,
L.
,
Yingjie
,
C.
,
Kun
,
Z.
, and
Ming
,
Z.
,
2012
, “
Economic Evaluation of Wind-Powered Pumped Storage System
,”
Syst. Eng. Procedia
,
4
, pp.
107
115
.
16.
Hasan
,
N.
,
Hassan
,
M.
,
Majid
,
M.
, and
Rahman
,
H.
,
2012
, “
Mathematical Model of Compressed Air Energy Storage in Smoothing 2mw Wind Turbine
,”
2012 IEEE International Power Engineering and Optimization Conference
,
Melaka, Malaysia
,
June 6–7
,
IEEE
, pp.
339
343
.
17.
Shaqsi
,
A. Z. A.
,
Sopian
,
K.
, and
Al-Hinai
,
A.
,
2020
, “
Review of Energy Storage Services, Applications, Limitations, and Benefits
,”
Energy Rep.
,
6
, pp.
288
306
.
18.
Rahman
,
J.
,
Jacob
,
R. A.
, and
Zhang
,
J.
,
2022
, “
Harnessing Operational Flexibility From Power to Hydrogen in a Grid-Tied Integrated Energy System
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
86229
,
St. Louis, MO
,
Aug. 14–17
,
American Society of Mechanical Engineers
, p.
V03AT03A022
.
19.
Wang
,
Z.
,
Zhang
,
X.
, and
Rezazadeh
,
A.
,
2021
, “
Hydrogen Fuel and Electricity Generation From a New Hybrid Energy System Based on Wind and Solar Energies and Alkaline Fuel Cell
,”
Energy Rep.
,
7
, pp.
2594
2604
.
20.
Herwartz
,
S.
,
Pagenkopf
,
J.
, and
Streuling
,
C.
,
2021
, “
Sector Coupling Potential of Wind-Based Hydrogen Production and Fuel Cell Train Operation in Regional Rail Transport in Berlin and Brandenburg
,”
Int. J. Hydrogen Energy
,
46
(
57
), pp.
29597
29615
.
21.
Kudria
,
S.
,
Ivanchenko
,
I.
,
Tuchynskyi
,
B.
,
Petrenko
,
K.
,
Karmazin
,
O.
, and
Riepkin
,
O.
,
2021
, “
Resource Potential for Wind-Hydrogen Power in Ukraine
,”
Int. J. Hydrogen Energy
,
46
(
1
), pp.
157
168
.
22.
Li
,
N.
,
Zhao
,
X.
,
Shi
,
X.
,
Pei
,
Z.
,
Mu
,
H.
, and
Taghizadeh-Hesary
,
F.
,
2021
, “
Integrated Energy Systems With Cchp and Hydrogen Supply: A New Outlet for Curtailed Wind Power
,”
Appl. Energy
,
303
, p.
117619
.
23.
Kakoulaki
,
G.
,
Kougias
,
I.
,
Taylor
,
N.
,
Dolci
,
F.
,
Moya
,
J.
, and
Jäger-Waldau
,
A.
,
2021
, “
Green Hydrogen in Europe–a Regional Assessment: Substituting Existing Production With Electrolysis Powered by Renewables
,”
Energy Convers. Manage.
,
228
, p.
113649
.
24.
Ayodele
,
T.
, and
Munda
,
J.
,
2019
, “
Potential and Economic Viability of Green Hydrogen Production by Water Electrolysis Using Wind Energy Resources in South Africa
,”
Int. J. Hydrogen Energy
,
44
(
33
), pp.
17669
17687
.
25.
Iqbal
,
W.
,
Yumei
,
H.
,
Abbas
,
Q.
,
Hafeez
,
M.
,
Mohsin
,
M.
,
Fatima
,
A.
,
Jamali
,
M. A.
,
Jamali
,
M.
,
Siyal
,
A.
, and
Sohail
,
N.
,
2019
, “
Assessment of Wind Energy Potential for the Production of Renewable Hydrogen in Sindh Province of Pakistan
,”
Processes
,
7
(
4
), p.
196
.
26.
Rahman
,
J.
,
Jacob
,
R.
, and
Zhang
,
J.
,
2023
, “
Multi-Timescale Power System Operations for Electrolytic Hydrogengeneration in Integrated Nuclear-Renewable Energy Systems
,”
TechRxiv. Preprint
.
27.
Buffi
,
M.
,
Prussi
,
M.
, and
Scarlat
,
N.
,
2022
, “
Energy and Environmental Assessment of Hydrogen From Biomass Sources: Challenges and Perspectives
,”
Biomass Bioenergy
,
165
, p.
106556
.
28.
Ogbonnaya
,
C.
,
Abeykoon
,
C.
,
Nasser
,
A.
, and
Turan
,
A.
,
2021
, “
Unitized Regenerative Proton Exchange Membrane Fuel Cell System for Renewable Power and Hydrogen Generation: Modelling, Simulation, and a Case Study
,”
Cleaner Eng. Technol.
,
4
, p.
100241
.
29.
Shen
,
Y.
,
Li
,
X.
,
Wang
,
N.
,
Li
,
L.
, and
Hoseyni
,
A.
,
2021
, “
Introducing and Investigation of a Pumped Hydro-compressed Air Storage Based on Wind Turbine and Alkaline Fuel Cell and Electrolyzer
,”
Sustainable Energy Technol. Assess.
,
47
, p.
101378
.
30.
da Silva
,
G. N.
,
Rochedo
,
P. R.
, and
Szklo
,
A.
,
2022
, “
Renewable Hydrogen Production to Deal With Wind Power Surpluses and Mitigate Carbon Dioxide Emissions From Oil Refineries
,”
Appl. Energy
,
311
, p.
118631
.
31.
Elberry
,
A. M.
,
Thakur
,
J.
,
Santasalo-Aarnio
,
A.
, and
Larmi
,
M.
,
2021
, “
Large-Scale Compressed Hydrogen Storage as Part of Renewable Electricity Storage Systems
,”
Int. J. Hydrogen Energy
,
46
(
29
), pp.
15671
15690
.
32.
Hassanpouryouzband
,
A.
,
Joonaki
,
E.
,
Edlmann
,
K.
, and
Haszeldine
,
R. S.
,
2021
, “
Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero?
,”
ACS Energy Lett.
,
6
(
6
), pp.
2181
2186
.
33.
Liu
,
B.
,
Liu
,
S.
,
Guo
,
S.
, and
Zhang
,
S.
,
2020
, “
Economic Study of a Large-Scale Renewable Hydrogen Application Utilizing Surplus Renewable Energy and Natural Gas Pipeline Transportation in China
,”
Int. J. Hydrogen Energy
,
45
(
3
), pp.
1385
1398
.
34.
He
,
W.
,
Zheng
,
Y.
,
You
,
S.
,
Strbac
,
G.
,
Therkildsen
,
K. T.
,
Olsen
,
G. P.
,
Howie
,
A.
,
Byklum
,
E.
, and
Sharifabadi
,
K. T.
,
2022
, “
Case Study on the Benefits and Risks of Green Hydrogen Production Co-location at Offshore Wind Farms
,”
J. Phys. Conf. Ser.
,
2265
, p.
042035
.
35.
Farag
,
H. E.
,
Al-Obaidi
,
A.
,
Khani
,
H.
,
El-Taweel
,
N.
,
El-Saadany
,
E.
, and
Zeineldin
,
H.
,
2020
, “
Optimal Operation Management of Distributed and Centralized Electrolysis-Based Hydrogen Generation and Storage Systems
,”
Electr. Power Syst. Res.
,
187
, p.
106476
.
36.
Li
,
H.
,
Rahman
,
J.
, and
Zhang
,
J.
,
2022
, “
Optimal Planning of Co-located Wind Energy and Hydrogen Plants: A Techno-economic Analysis
,”
J. Phys. Conf. Ser.
,
2265
(
2021
), p.
042063
.
37.
Rezaei
,
M.
,
Khalilpour
,
K. R.
, and
Mohamed
,
M. A.
,
2021
, “
Co-production of Electricity and Hydrogen From Wind: A Comprehensive Scenario-Based Techno-economic Analysis
,”
Int. J. Hydrogen Energy
,
46
(
35
), pp.
18242
18256
.
38.
Giampieri
,
A.
,
Ling-Chin
,
J.
, and
Roskilly
,
A. P.
,
2023
, “
Techno-Economic Assessment of Offshore Wind-to-Hydrogen Scenarios: A UK Case Study
,”
Int. J. Hydrogen Energy
.
39.
Dabar
,
O. A.
,
Awaleh
,
M. O.
,
Waberi
,
M. M.
, and
Adan
,
A. -B. I.
,
2022
, “
Wind Resource Assessment and Techno-Economic Analysis of Wind Energy and Green Hydrogen Production in the Republic of Djibouti
,”
Energy Rep.
,
8
, pp.
8996
9016
.
40.
Kong
,
L.
,
Li
,
L.
,
Cai
,
G.
,
Liu
,
C.
,
Ma
,
P.
,
Bian
,
Y.
, and
Ma
,
T.
,
2021
, “
Techno-economic Analysis of Hydrogen Energy for Renewable Energy Power Smoothing
,”
Int. J. Hydrogen Energy
,
46
(
3
), pp.
2847
2861
.
41.
Mishra
,
S.
,
Pohl
,
J.
,
Laws
,
N.
,
Cutler
,
D.
,
Kwasnik
,
T.
,
Becker
,
W.
,
Zolan
,
A.
,
Anderson
,
K.
,
Olis
,
D.
, and
Elgqvist
,
E.
,
2022
, “
Computational Framework for Behind-the-Meter Der Techno-economic Modeling and Optimization: Reopt Lite
,”
Energy Syst.
,
13
(
2
), pp.
509
537
.
42.
Saur
,
G.
,
2008
, “
Wind-to-Hydrogen Project: Electrolyzer Capital Cost Study
,” Technical Report NREL/TP-550-44103,
National Renewable Energy Lab. (NREL)
,
Golden, CO
.
43.
Connelly
,
E.
,
Penev
,
M.
,
Milbrandt
,
A.
,
Roberts
,
B.
,
Melaina
,
M. W.
, and
Gilroy
,
N.
,
2020
, “Resource Assessment for Hydrogen Production.”
44.
Ruth
,
M. F.
,
Jadun
,
P.
,
Gilroy
,
N.
,
Connelly
,
E.
,
Boardman
,
R.
,
Simon
,
A.
,
Elgowainy
,
A.
, and
Zuboy
,
J.
,
2020
, “
The Technical and Economic Potential of the h2@ Scale Hydrogen Concept Within the United States
,” Technical Report NREL/TP-6A20-77610,
National Renewable Energy Lab.(NREL)
,
Golden, CO
.
45.
Parks
,
G.
,
Boyd
,
R.
,
Cornish
,
J.
, and
Remick
,
R.
,
2014
, “
Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration
,” Technical Report NREL/BK-6A10-58564,
National Renewable Energy Lab.(NREL)
,
Golden, CO
.
46.
NREL
, “
Annual Technology Baseline
,” https://atb.nrel.gov/, Accessed July 25, 2023.
47.
Schmidt
,
O.
,
Gambhir
,
A.
,
Staffell
,
I.
,
Hawkes
,
A.
,
Nelson
,
J.
, and
Few
,
S.
,
2017
, “
Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study
,”
Int. J. Hydrogen Energy
,
42
(
52
), pp.
30470
30492
.
48.
Offer
,
G. J.
,
Howey
,
D.
,
Contestabile
,
M.
,
Clague
,
R.
, and
Brandon
,
N.
,
2010
, “
Comparative Analysis of Battery Electric, Hydrogen Fuel Cell and Hybrid Vehicles in a Future Sustainable Road Transport System
,”
Energy Policy
,
38
(
1
), pp.
24
29
.
49.
Alirahmi
,
S. M.
,
Razmi
,
A. R.
, and
Arabkoohsar
,
A.
,
2021
, “
Comprehensive Assessment and Multi-objective Optimization of a Green Concept Based on a Combination of Hydrogen and Compressed Air Energy Storage (CAES) Systems
,”
Renew. Sustainable Energy Rev.
,
142
, p.
110850
.
You do not currently have access to this content.