Abstract

Remanufacturing is a process that returns end-of-life equipment to as-new conditions and offers numerous environmental and economic benefits. To fully capitalize on remanufacturing, its synergistic interactions with design must be fully realized and addressed during the design stage. Although this fact is widely recognized in the literature, most of the current studies focus primarily either on the design or remanufacturing aspects of design for remanufacturing (DfRem). In an effort to offer a more integrated DfRem approach than those reported in the literature, we propose a new combined design and remanufacturing optimization (reman co-design) framework that takes a holistic approach by leveraging the intricate interplay between design and remanufacturing. The aim of this formulation is to identify the optimal decisions that maximize the benefits of remanufacturing throughout the entire lifespan of a product. To showcase the utility of the new formulation, we are using a case study of a hydraulic manifold, (re)manufactured by John Deere. Using this industry example, we compare the results of reman co-design to the ones from a decoupled remanufacturing design approach. Results reveal that remanufacturing benefits are better realized and improved upon when using the developed reman co-design approach.

References

1.
Sihvonen
,
S.
, and
Ritola
,
T.
,
2015
, “
Conceptualizing Rex for Aggregating End-of-Life Strategies in Product Development
,”
Procedia CIRP
,
29
, pp.
639
644
.
2.
Iung
,
B.
, and
Levrat
,
E.
,
2014
, “
Advanced Maintenance Services for Promoting Sustainability
,”
Procedía CIRP
,
22
, pp.
15
22
.
3.
Liu
,
X.
, and
Wang
,
P.
,
2020
, “
Maintenance Decision Making Using State Dependent Markov Analysis With Failure Couplings
,”
Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM)
,
Virtual
,
Aug. 20–23
, IEEE, pp.
1
6
.
4.
Jasiulewicz-Kaczmarek
,
M.
,
Legutko
,
S.
, and
Kluk
,
P.
,
2020
, “
Maintenance 4.0 Technologies—New Opportunities for Sustainability Driven Maintenance
,”
Manage. Prod. Eng. Rev.
,
11
(
2
), pp.
74
87
.
5.
Guo
,
X.
,
Zhou
,
M.
,
Abusorrah
,
A.
,
Alsokhiry
,
F.
, and
Sedraoui
,
K.
,
2020
, “
Disassembly Sequence Planning: A Survey
,”
IEEE/CAA J. Autom. Sin.
,
8
(
7
), pp.
1308
1324
.
6.
Mishra
,
A. K.
,
Liu
,
X.
,
Hu
,
C.
, and
Wang
,
P.
,
2023
, “
Reliability-Informed End-of-Use Decision Making for Product Sustainability Using Two-Stage Stochastic Optimization
,”
Appl. Math. Model.
,
121
, pp.
364
385
.
7.
Mossali
,
E.
,
Picone
,
N.
,
Gentilini
,
L.
,
Rodrìguez
,
O.
,
Pérez
,
J. M.
, and
Colledani
,
M.
,
2020
, “
Lithium-Ion Batteries Towards Circular Economy: A Literature Review of Opportunities and Issues of Recycling Treatments
,”
J. Environ. Manage.
,
264
, p.
110500
.
8.
Hong
,
M.
, and
Chen
,
E. Y.-X.
,
2017
, “
Chemically Recyclable Polymers: A Circular Economy Approach to Sustainability
,”
Green Chem.
,
19
(
16
), pp.
3692
3706
.
9.
Lee
,
C.-M.
,
Woo
,
W.-S.
, and
Roh
,
Y.-H.
,
2017
, “
Remanufacturing: Trends and Issues
,”
Int. J. Precision Eng. Manuf. Green Technol.
,
4
(
1
), pp.
113
125
.
10.
Paterson
,
D. A.
,
Ijomah
,
W. L.
, and
Windmill
,
J. F.
,
2017
, “
End-of-Life Decision Tool With Emphasis on Remanufacturing
,”
J. Clean. Prod.
,
148
, pp.
653
664
.
11.
Matsumoto
,
M.
,
Yang
,
S.
,
Martinsen
,
K.
, and
Kainuma
,
Y.
,
2016
, “
Trends and Research Challenges in Remanufacturing
,”
Int. J. Precision Eng. Manuf. Green Technol.
,
3
(
1
), pp.
129
142
.
12.
Li
,
M.
,
Nemani
,
V. P.
,
Liu
,
J.
,
Lee
,
M. A.
,
Ahmed
,
N.
,
Kremer
,
G. E.
, and
Hu
,
C.
,
2021
, “
Reliability-Informed Life Cycle Warranty Cost and Life Cycle Analysis of Newly Manufactured and Remanufactured Units
,”
ASME J. Mech. Des.
,
143
(
11
), p.
112001
.
13.
Wang
,
X.
,
Zhu
,
Y.
,
Sun
,
H.
, and
Jia
,
F.
,
2018
, “
Production Decisions of New and Remanufactured Products: Implications for Low Carbon Emission Economy
,”
J. Clean. Prod.
,
171
, pp.
1225
1243
.
14.
Sutherland
,
J. W.
,
Adler
,
D. P.
,
Haapala
,
K. R.
, and
Kumar
,
V.
,
2008
, “
A Comparison of Manufacturing and Remanufacturing Energy Intensities With Application to Diesel Engine Production
,”
CIRP Ann.
,
57
(
1
), pp.
5
8
.
15.
Kurilova-Palisaitiene
,
J.
,
Sundin
,
E.
, and
Poksinska
,
B.
,
2018
, “
Remanufacturing Challenges and Possible Lean Improvements
,”
J. Clean. Prod.
,
172
, pp.
3225
3236
.
16.
Mutha
,
A.
,
Bansal
,
S.
, and
Guide
,
V. D. R.
,
2016
, “
Managing Demand Uncertainty Through Core Acquisition in Remanufacturing
,”
Prod. Oper. Manage.
,
25
(
8
), pp.
1449
1464
.
17.
Wei
,
S.
,
Tang
,
O.
, and
Sundin
,
E.
,
2015
, “
Core (Product) Acquisition Management for Remanufacturing: A Review
,”
J. Remanuf.
,
5
(
4
), pp.
1
27
.
18.
Zhang
,
T.
,
Chu
,
J.
,
Wang
,
X.
,
Liu
,
X.
, and
Cui
,
P.
,
2011
, “
Development Pattern and Enhancing System of Automotive Components Remanufacturing Industry in China
,”
Resour. Conserv. Recycl.
,
55
(
6
), pp.
613
622
.
19.
Chen
,
S.
,
Pan
,
Y.
,
Wu
,
D.
, and
Dolgui
,
A.
,
2023
, “
In-House Versus Outsourcing Collection in a Closed-Loop Supply Chain With Remanufacturing Technology Development
,”
Int. J. Prod. Res.
,
61
(
6
), pp.
1720
1735
.
20.
Nasr
,
N.
, and
Thurston
,
M.
,
2006
, “
Remanufacturing: A Key Enabler to Sustainable Product Systems
,”
CIRP International Conference on Life Cycle Engineering
,
Leuven, Belguim
,
May 31–June 2
, pp.
15
18
.
21.
Yang
,
S.
,
Ong
,
S.
, and
Nee
,
A.
,
2016
, “
A Decision Support Tool for Product Design for Remanufacturing
,”
Procedia CIRP
,
40
, pp.
144
149
.
22.
Hilton
,
B.
,
2021
, “Design for Remanufacturing,” Final Report for Remade Project, Rochester Institute of Technology.
23.
Cong
,
L.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2019
, “
A Design Method to Improve End-of-Use Product Value Recovery for Circular Economy
,”
ASME J. Mech. Des.
,
141
(
4
), p.
044502
.
24.
Liu
,
X.
, and
Wang
,
P.
,
2023
, “
Integrated Sustainable Product Design With Warranty and End-of-Use Considerations [Unpublished Manuscript]
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
.
25.
Kim
,
J.
,
Saidani
,
M.
, and
Kim
,
H. M.
,
2021
, “
Designing an Optimal Modular-Based Product Family Under Intellectual Property and Sustainability Considerations
,”
ASME J. Mech. Des.
,
143
(
11
), p.
112002
.
26.
Kwak
,
M.
, and
Kim
,
H. M.
,
2009
, “
Sustainable Product Design by a Simultaneous Consideration of Pre-life and End-of-Life of Products
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC)
,
San Diego, CA
,
Aug. 30-Sept. 2
.
27.
Kwak
,
M.
, and
Kim
,
H. M.
,
2011
, “
Assessing Product Family Design From an End-of-Life Perspective
,”
Eng. Optim.
,
43
(
3
), pp.
233
255
.
28.
Joshi
,
A. D.
, and
Gupta
,
S. M.
,
2019
, “
Evaluation of Design Alternatives of End-of-Life Products Using Internet of Things
,”
Int. J. Prod. Econ.
,
208
, pp.
281
293
.
29.
Kwak
,
M.
, and
Kim
,
H. M.
,
2010
, “
Evaluating End-of-Life Recovery Profit by a Simultaneous Consideration of Product Design and Recovery Network Design
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071001
.
30.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsov
,
A.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proceedings of the 2001 American Control Conference
, IEEE, New York, Vol.
3
, pp.
1864
1869
.
31.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.
32.
Peters
,
D. L.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2009
, “
On Measures of Coupling Between the Artifact and Controller Optimal Design Problems
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
1363
1372
.
33.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.
34.
Nemani
,
V. P.
,
Liu
,
J.
,
Ahmed
,
N.
,
Cartwright
,
A.
,
Kremer
,
G. E.
, and
Hu
,
C.
,
2022
, “
Reliability-Informed Economic and Energy Evaluation for Bi-level Design for Remanufacturing: A Case Study of Transmission and Hydraulic Manifold
,”
ASME J. Mech. Des.
,
144
(
8
), p.
082001
.
35.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2019
, “
A Comparative Study of Formulations and Algorithms for Reliability-Based Co-Design Problems
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031104
.
36.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
A Single-Loop Reliability-Based MDSDO Formulation for Combined Design and Control Optimization of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021703
.
37.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2021
, “
A Reliability-Based Formulation for Simulation-Based Control Co-Design Using Generalized Polynomial Chaos Expansion
,”
ASME J. Mech. Des.
,
144
(
5
), p.
051705
.
38.
Azad
,
S.
, and
Herber
,
D. R.
,
2023
, “
An Overview of Uncertain Control Co-Design Formulations
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091709
.
39.
Enevoldsen
,
I.
,
1994
, “
Reliability-Based Optimization as an Information Tool
,”
Mech. Struct. Mach.
,
22
(
1
), pp.
117
135
.
40.
Yu
,
X.
,
Choi
,
K.
, and
Chang
,
K. H.
,
1997
, “
A Mixed Design Approach for Probabilistic Structural Durability
,”
Struct. Optim.
,
14
, pp.
81
90
.
41.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor, MI
.
42.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
International Conference on Neural Networks (ICNN)
,
Perth, Australia
,
Nov. 27–Dec. 1
, pp.
1942
1948
.
43.
Nemhauser
,
G.
, and
Wolsey
,
L.
,
1988
,
Integer and Combinatorial Optimization
,
Wiley
,
New York
.
44.
SAE
,
1995
, “Potential Failure Mode and Effects Analysis,” SAE J-1739.
45.
Lam
,
A.
,
Sherwood
,
M.
, and
Shu
,
L.
,
2001
, “
FMEA-Based Design for Remanufacture Using Automotive-Remanufacturer Data
,” SAE Technical Paper, 2001, No.
1
, p.
0308
.
46.
Inventory of U.S Greenhouse Gas Emissions and Sinks
,”
2023
, Tech. Rep., United States Environmental Protection Agency, https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021
47.
Markets Insider
,”
2023
, https://markets.businessinsider.com/commodities/aluminum-price, Accessed May s5, 2023.
48.
49.
Dalquist
,
S.
, and
Gutowski
,
T.
,
2004
, “
Life Cycle Analysis of Conventional Manufacturing Techniques: Die Casting
,”
International Mechanical Engineering Congress and Exposition
,
7
, pp.
631
641
.
50.
Gutowski
,
T.
,
Dahmus
,
J.
, and
Thiriez
,
A.
,
2006
, “
Electrical Energy Requirements for Manufacturing Processes
,”
International Conference on Life Cycle Engineering
,
Leuven, Belguim
,
May 31–June 2
, pp.
623
638
.
51.
U.S. Energy Information Administration (EIA)
,
2023
, “
How Much Carbon Dioxide Is Produced Per Kilowatthour of U.S. Electricity Generation?
https://www.eia.gov/tools/faqs, Accessed June 1.
You do not currently have access to this content.