Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper introduces a novel design method that enhances the force/torque, bendability, and controllability of soft pneumatic actuators (SPAs). The complex structure of the soft actuator is simplified by approximating it as a cantilever beam. This allows us to derive approximated nonlinear kinematic models and a dynamical model, which is explored to understand the correlation between natural frequency and dimensional parameters of SPA. The design problem is then transformed into an optimization problem, using kinematic equations as the objective function and the dynamical equation as a constraint. By solving this optimization problem, the optimal dimensional parameters are determined. Six prototypes are manufactured to validate the proposed approach. The optimal actuator successfully generates the desired force/torque and bending angle, while its natural frequency remains within the constrained range. This work highlights the potential of using optimization formulation and approximated nonlinear models to boost the performance and dynamical properties of soft pneumatic actuators.

References

1.
Iida
,
F.
, and
Laschi
,
C.
,
2011
, “
Soft Robotics: Challenges and Perspectives
,”
Procedia Comput. Sci.
,
7
(
1
), pp.
99
102
.
2.
Tang
,
Z.
,
Wang
,
P.
,
Xin
,
W.
,
Xie
,
Z.
,
Kan
,
L.
,
Mohanakrishnan
,
M.
, and
Laschi
,
C.
,
2023
, “
Meta-Learning-Based Optimal Control for Soft Robotic Manipulators to Interact With Unknown Environments
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29– June 2
,
IEEE, pp. 982-988
.
3.
Trivedi
,
D.
,
Dienno
,
D.
, and
Rahn
,
C. D.
,
2008
, “
Optimal, Model-Based Design of Soft Robotic Manipulators
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091402
.
4.
Yang
,
W.-T.
, and
Tomizuka
,
M.
,
2022
, “
Design a Multifunctional Soft Tactile Sensor Enhanced by Machine Learning Approaches
,”
AMSE J. Dyn. Syst. Meas. Contr.
,
144
(
8
), p.
081006
.
5.
Alici
,
G.
,
Canty
,
T.
,
Mutlu
,
R.
,
Hu
,
W.
, and
Sencadas
,
V.
,
2018
, “
Modeling and Experimental Evaluation of Bending Behavior of Soft Pneumatic Actuators Made of Discrete Actuation Chambers
,”
Soft Rob.
,
5
(
1
), pp.
24
35
.
6.
Navas
,
E.
,
Fernndez
,
R.
,
Seplveda
,
D.
,
Armada
,
M.
, and
Gonzalez-de Santos
,
P.
,
2021
, “
Soft Grippers for Automatic Crop Harvesting: A Review
,”
Sensors
,
21
(
8
), p.
2689
.
7.
Zhu
,
R.
,
Fan
,
D.
,
Wu
,
W.
,
He
,
C.
,
Xu
,
G.
,
Dai
,
J. S.
, and
Wang
,
H.
,
2023
, “
Soft Robots for Cluttered Environments Based on Origamianisotropic Stiffness Structure (Oass) Inspired by Desertiguana
,”
Adv. Intell. Syst.
,
5
(
6
), p.
2200301
.
8.
Wang
,
Z.
,
Torigoe
,
Y.
, and
Hirai
,
S.
,
2017
, “
A Prestressed Soft Gripper: Design, Modeling, Fabrication, and Tests for Food Handling
,”
IEEE Robot. Autom. Lett.
,
2
(
4
), pp.
1909
1916
.
9.
Zaidi
,
S.
,
Maselli
,
M.
,
Laschi
,
C.
, and
Cianchetti
,
M.
,
2021
, “
Actuation Technologies for Soft Robot Grippers and Manipulators: A Review
,”
Curr. Rob. Rep.
,
2
(
3
), pp.
1
15
.
10.
Drotman
,
D.
,
Ishida
,
M.
,
Jadhav
,
S.
, and
Tolley
,
M. T.
,
2018
, “
Application-driven Design of Soft, 3-d Printed, Pneumatic Actuators with Bellows
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
78
87
.
11.
Liu
,
J.
,
Wei
,
J.
,
Zhang
,
G.
,
Wang
,
S.
, and
Zuo
,
S.
,
2019
, “
Pneumatic Soft arm Based on Spiral Balloon Weaving and Shape Memory Polymer Backbone
,”
ASME J. Mech. Des.
,
141
(
8
), p.
082302
.
12.
Yang
,
W.-T.
,
Stuart
,
H. S.
, and
Tomizuka
,
M.
,
2023
, “
Mechanical Modeling and Optimal Model-Based Design of a Soft Pneumatic Actuator
,”
Proceedings of the IEEE International Conference on Soft Robotics (RoboSoft)
,
Singapore
,
Apr. 4–7
,
IEEE, pp. 1–7
.
13.
Wang
,
Z.
, and
Hirai
,
S.
,
2018
, “
Chamber Dimension Optimization of a Bellow-Type Soft Actuator for Food Material Handling
,”
Proceedings of the IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy
,
Apr. 24–28
,
IEEE, pp. 382–387
.
14.
Kim
,
S.
,
Laschi
,
C.
, and
Trimmer
,
B.
,
2013
, “
Soft Robotics: A Bioinspired Evolution in Robotics
,”
Trends Biotechnol.
,
31
(
5
), pp.
287
294
.
15.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
16.
Gilday
,
K.
,
Hughes
,
J.
, and
Iida
,
F.
,
2023
, “
Sensing, Actuating, and Interacting Through Passive Body Dynamics: A Framework for Soft Robotic Hand Design
,”
Soft Rob.
,
10
(
1
), pp.
59
173
.
17.
Zhuang
,
Z.
,
Guan
,
Y.
,
Zhang
,
Z.
,
Wei
,
W.
,
Li
,
J.
, and
Dai
,
J.
,
2022
, “
Design and Manufacture of Pneumatically Actuated Flexible Hand
,”
Proceedings of the International Conference on Control and Robotics Engineering (ICCRE)
,
Beijing, China
,
Apr. 15–17
, pp.
16
20
.
18.
Xie
,
Z.
,
Domel
,
A. G.
,
An
,
N.
,
Green
,
C.
,
Gong
,
Z.
,
Wang
,
T.
,
Knubben
,
E. M.
,
Weaver
,
J. C.
,
Bertoldi
,
K.
, and
Wen
,
L.
,
2020
, “
Octopus Arm-Inspired Tapered Soft Actuators With Suckers for Improved Grasping
,”
Soft Rob.
,
7
(
5
), pp.
639
648
.
19.
Mazzolai
,
B.
,
Mondini
,
A.
,
Tramacere
,
F.
,
Riccomi
,
G.
,
Sadeghi
,
A.
,
Giordano
,
G.
,
Del Dottore
,
E.
,
Scaccia
,
M.
,
Zampato
,
M.
, and
Carminati
,
S.
,
2019
, “
Octopusinspired Soft Arm With Suction Cups for Enhanced Grasping Tasks in Confined Environments
,”
Adv. Intell. Syst.
,
1
(
6
), p.
1900041
.
20.
Guan
,
Q.
,
Sun
,
J.
,
Liu
,
Y.
,
Wereley
,
N. M.
, and
Leng
,
J.
,
2020
, “
Novel Bending and Helical Extensile/Contractile Pneumatic Artificial Muscles Inspired by Elephant Trunk
,”
Soft Rob.
,
7
(
5
), pp.
597
614
.
21.
Elsayed
,
Y.
,
Vincensi
,
A.
,
Lekakou
,
C.
,
Geng
,
T.
,
Saaj
,
C.
,
Ranzani
,
T.
,
Cianchetti
,
M.
, and
Menciassi
,
A.
,
2014
, “
Finite Element Analysis and Design Optimization of a Pneumatically Actuating Silicone Module for Robotic Surgery Applications
,”
Soft Rob.
,
1
(
4
), pp.
255
262
.
22.
Hu
,
W.
,
Mutlu
,
R.
,
Li
,
W.
, and
Alici
,
G.
,
2018
, “
A Structural Optimisation Method for a Soft Pneumatic Actuator
,”
Robotics
,
7
(
2
), p.
24
.
23.
Zhang
,
H.
,
Wang
,
M. Y.
,
Chen
,
F.
,
Wang
,
Y.
,
Kumar
,
A. S.
, and
Fuh
,
J. Y.
,
2017
, “
Design and Development of a Soft Gripper With Topology Optimization
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada
,
Sept. 24–28
,
IEEE, pp. 6239–6244
.
24.
Hassan
,
T.
,
Cianchetti
,
M.
,
Moatamedi
,
M.
,
Mazzolai
,
B.
,
Laschi
,
C.
, and
Dario
,
P.
,
2018
, “
Finite-Element Modeling and Design of a Pneumatic Braided Muscle Actuator With Multifunctional Capabilities
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
109
119
.
25.
Hibbeler
,
R. C.
,
2017
,
Mechanics of Materials
, 8th ed.,
Pearson
,
New York
.
26.
Gharavi
,
L.
,
Zareinejad
,
M.
, and
Ohadi
,
A.
,
2022
, “
Dynamic Finite-Element Analysis of a Soft Bending Actuator
,”
Mechatronics
,
81
, p.
102690
.
27.
Azizkhani
,
M.
,
Zareinejad
,
M.
, and
Khosravi
,
M. A.
,
2022
, “
Model Reference Adaptive Control of a Soft Bending Actuator With Input Constraints and Parametric Uncertainties
,”
Mechatronics
,
84
, p.
102800
.
28.
Xavier
,
M. S.
,
Fleming
,
A. J.
, and
Yong
,
Y. K.
,
2022
, “
Nonlinear Estimation and Control of Bending Soft Pneumatic Actuators Using Feedback Linearization and UKF
,”
IEEE/ASME Trans. Mechatron.
,
27
(
4
), pp.
1919
1927
.
29.
Skorina
,
E. H.
,
Luo
,
M.
,
Tao
,
W.
,
Chen
,
F.
,
Fu
,
J.
, and
Onal
,
C. D.
,
2017
, “
Adapting to Flexibility: Model Reference Adaptive Control of Soft Bending Actuators
,”
IEEE Robot. Autom. Lett.
,
2
(
2
), pp.
964
970
.
30.
Wang
,
T.
,
Zhang
,
Y.
,
Chen
,
Z.
, and
Zhu
,
S.
,
2019
, “
Parameter Identification and Model-Based Nonlinear Robust Control of Fluidic Soft Bending Actuators
,”
IEEE/ASME Trans. Mechatron.
,
24
(
3
), pp.
1346
1355
.
31.
Lotfiani
,
A.
,
Yi
,
X.
,
Shao
,
Z.
,
Zhao
,
H.
, and
Parkestani
,
A. N.
,
2021
, “
Analytical Modeling and Optimization of a Corrugated Soft Pneumatic Finger Considering the Performance of Pinch and Power Grasps
,”
Extreme Mech. Lett.
,
44
, p.
101215
.
32.
Liu
,
C.-H.
,
Chen
,
L.-J.
,
Chi
,
J.-C.
, and
Wu
,
J.-Y.
,
2022
, “
Topology Optimization Design and Experiment of a Soft Pneumatic Bending Actuator for Grasping Applications
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
2086
2093
.
33.
Demir
,
K. G.
,
Zhang
,
Z.
,
Yang
,
J.
, and
Gu
,
G. X.
,
2020
, “
Computational and Experimental Design Exploration of 3d Printed Soft Pneumatic Actuators
,”
Adv. Intell. Syst.
,
2
(
7
), p.
2000013
.
34.
Polygerinos
,
P.
,
Lyne
,
S.
,
Wang
,
Z.
,
Nicolini
,
L. F.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
, and
Walsh
,
C. J.
,
2013
, “
Towards a Soft Pneumatic Glove for Hand Rehabilitation
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
Nov. 3–7
,
IEEE, pp. 1512–1517
.
35.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
36.
Xavier
,
M. S.
,
Fleming
,
A. J.
, and
Yong
,
Y. K.
,
2021
, “
Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments
,”
Adv. Intell. Syst.
,
3
(
2
), p.
2000187
.
37.
Yang
,
W.-T.
,
Hirao
,
M.
, and
Tomizuka
,
M.
,
2023
, “
Design, Modeling, and Parametric Analysis of a Syringe Pump for Soft Pneumatic Actuators
,”
Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Seattle, WA
,
June 27–July 1
,
IEEE, pp. 317–322
.
38.
Lee
,
K.
,
2002
, “
Large Deflections of Cantilever Beams of non-Linear Elastic Material Under a Combined Loading
,”
Int. J. Non Linear Mech.
,
37
(
3
), pp.
439
443
.
39.
Marechal
,
L.
,
Balland
,
P.
,
Lindenroth
,
L.
,
Petrou
,
F.
,
Kontovounisios
,
C.
, and
Bello
,
F.
,
2021
, “
Toward a Common Framework and Database of Materials for Soft Robotics
,”
Soft Rob.
,
8
(
3
), pp.
284
297
.
40.
Skorina
,
E. H.
,
Luo
,
M.
,
Ozel
,
S.
,
Chen
,
F.
,
Tao
,
W.
, and
Onal
,
C. D.
,
2015
, “
Feedforward Augmented Sliding Mode Motion Control of Antagonistic Soft Pneumatic Actuators
,”
Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
,
IEEE, pp. 2544–2549
.
41.
Wang
,
J.
,
Fei
,
Y.
, and
Pang
,
W.
,
2019
, “
Design, Modeling, and Testing of a Soft Pneumatic Glove With Segmented Pneunets Bending Actuators
,”
IEEE/ASME Trans. Mechatron.
,
24
(
3
), pp.
990
1001
.
42.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), p.
149185
.
43.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
,
Springer
,
New York
.
44.
Wang
,
Z.
,
Or
,
K.
, and
Hirai
,
S.
,
2020
, “
A Dual-Mode Soft Gripper for Food Packaging
,”
Rob. Auton. Syst.
,
125
, p.
103427
.
45.
Elgeneidy
,
K.
,
Lohse
,
N.
, and
Jackson
,
M.
,
2018
, “
Bending Angle Prediction and Control of Soft Pneumatic Actuators With Embedded Flex Sensorsa Data-Driven Approach
,”
Mechatronics
,
50
, pp.
234
247
.
46.
Kürkçü
,
B.
,
Kasnakoğlu
,
C.
, and
Efe
,
,
2018
, “
Disturbance/Uncertainty Estimator Based Integral Sliding-Mode Control
,”
IEEE Trans. Automat. Contr.
,
63
(
11
), pp.
3940
3947
.
47.
Sastry
,
S.
,
2013
,
Nonlinear Systems: Analysis, Stability, and Control
,
Springer Science and Business Media
,
New York
.
You do not currently have access to this content.