Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper presents a new topology optimization scheme for the manufacturable piezoelectric energy harvesters (PEHs). Most of the existing topology optimization schemes for the design of PEHs are difficult to cope with manufacturing constraints producing design results that pose serious challenges for the local poling of the piezoelectric materials. In this work, dual-moving morphable component (dual-MMC) scheme for explicit topology optimization for the design of PEHs is presented. In dual-MMC scheme, two independent sets of MMC are employed to describe the structural topology of the PEH and polarization profile in piezoelectric material in an explicit manner. With the use of the scheme, the shape of electrodes and the opposite polarization directions in the local poling process can be effectively treated as a constraint making the realization of the PEH an easy task. Several examples of the design of cantilever-type PEH are provided to demonstrate the effectiveness of the proposed approach. Furthermore, a designed PEH actually manufactured for demonstration of the production process.

References

1.
Dagdeviren
,
C.
,
Joe
,
P.
,
Tuzman
,
O. L.
,
Park
,
K. I.
,
Lee
,
K. J.
,
Shi
,
Y.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2016
, “
Recent Progress in Flexible and Stretchable Piezoelectric Devices for Mechanical Energy Harvesting, Sensing and Actuation
,”
Extreme Mech. Lett.
,
9
, pp.
269
281
.
2.
Dagdeviren
,
C.
,
Su
,
Y.
,
Joe
,
P.
,
Yona
,
R.
,
Liu
,
Y.
,
Kim
,
Y. S.
,
Huang
,
Y.
, et al
,
2014
, “
Conformable Amplified Lead Zirconate Titanate Sensors With Enhanced Piezoelectric Response for Cutaneous Pressure Monitoring
,”
Nat. Commun.
,
5
(
1
), p.
4496
.
3.
Priya
,
S.
,
Song
,
H.-C.
,
Zhou
,
Y.
,
Varghese
,
R.
,
Chopra
,
A.
,
Kim
,
S.-G.
,
Kanno
,
I.
, et al
,
2019
, “
A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits
,”
Energy Harvest. Syst.
,
4
(
1
), pp.
3
39
.
4.
Bowen
,
C. R.
,
Kim
,
H. A.
,
Weaver
,
P. M.
, and
Dunn
,
S.
,
2014
, “
Piezoelectric and Ferroelectric Materials and Structures for Energy Harvesting Applications
,”
Energy Environ. Sci.
,
7
(
1
), pp.
25
44
.
5.
Tao
,
J. X.
,
Viet
,
N. V.
,
Carpinteri
,
A.
, and
Wang
,
Q.
,
2017
, “
Energy Harvesting From Wind by a Piezoelectric Harvester
,”
Eng. Struct.
,
133
, pp.
74
80
.
6.
Dagdeviren
,
C.
,
Yang
,
B. D.
,
Su
,
Y.
,
Tran
,
P. L.
,
Joe
,
P.
,
Anderson
,
E.
,
Xia
,
J.
, et al
,
2014
, “
Conformal Piezoelectric Energy Harvesting and Storage From Motions of the Heart, Lung, and Diaphragm
,”
Proc. Natl. Acad. Sci.
,
111
(
5
), pp.
1927
1932
.
7.
Tandon
,
B.
,
Blaker
,
J. J.
, and
Cartmell
,
S. H.
,
2018
, “
Piezoelectric Materials as Stimulatory Biomedical Materials and Scaffolds for Bone Repair
,”
Acta Biomater.
,
73
, pp.
1
20
.
8.
Tang
,
Y.
,
Wu
,
C.
,
Wu
,
Z.
,
Hu
,
L.
,
Zhang
,
W.
, and
Zhao
,
K.
,
2017
, “
Fabrication and In Vitro Biological Properties of Piezoelectric Bioceramics for Bone Regeneration
,”
Sci. Rep.
,
7
(
1
), p.
43360
.
9.
Wu
,
N.
,
Bao
,
B.
, and
Wang
,
Q.
,
2021
, “
Review on Engineering Structural Designs for Efficient Piezoelectric Energy Harvesting to Obtain High Power Output
,”
Eng. Struct.
,
235
, p.
112068
.
10.
Sharma
,
S.
,
Kiran
,
R.
,
Azad
,
P.
, and
Vaish
,
R.
,
2022
, “
A Review of Piezoelectric Energy Harvesting Tiles: Available Designs and Future Perspective
,”
Energy Convers. Manage.
,
254
, p.
115272
.
11.
Saadon
,
S.
, and
Sidek
,
O.
,
2011
, “
A Review of Vibration-Based MEMS Piezoelectric Energy Harvesters
,”
Energy Convers. Manage.
,
52
(
1
), pp.
500
504
.
12.
Liu
,
H. C.
,
Zhong
,
J. W.
,
Lee
,
C.
,
Lee
,
S. W.
, and
Lin
,
L. W.
,
2018
, “
A Comprehensive Review on Piezoelectric Energy Harvesting Technology: Materials, Mechanisms, and Applications
,”
Appl. Phys. Rev.
,
5
(
4
), p.
041306
.
13.
Andosca
,
R.
,
McDonald
,
T. G.
,
Genova
,
V.
,
Rosenberg
,
S.
,
Keating
,
J.
,
Benedixen
,
C.
, and
Wu
,
J. R.
,
2012
, “
Experimental and Theoretical Studies on MEMS Piezoelectric Vibrational Energy Harvesters With Mass Loading
,”
Sens. Actuators, A
,
178
, pp.
76
87
.
14.
Shahruz
,
S. M.
,
2006
, “
Design of Mechanical Band-Pass Filters With Large Frequency Bands for Energy Scavenging
,”
Mechatronics
,
16
(
9
), pp.
523
531
.
15.
Challa
,
V. R.
,
Prasad
,
M. G.
,
Shi
,
Y.
, and
Fisher
,
F. T.
,
2008
, “
A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
,
17
(
1
), p.
015035
.
16.
Kim
,
T.
,
Ko
,
Y.
,
Yoo
,
C.
,
Choi
,
B.
,
Han
,
S.
, and
Kim
,
N.
,
2020
, “
Design Optimisation of Wide-Band Piezoelectric Energy Harvesters for Self-Powered Devices
,”
Energy Convers. Manage.
,
225
, p.
113443
.
17.
Abdelkareem
,
M. A. A.
,
Jing
,
X.
,
Eldaly
,
A. B. M.
, and
Choy
,
Y.
,
2023
, “
3-DOF X-Structured Piezoelectric Harvesters for Multidirectional Low-Frequency Vibration Energy Harvesting
,”
Mech. Syst. Sig. Process.
,
200
, p.
110616
.
18.
Park
,
J.
,
Lee
,
S.
, and
Kwak
,
B. M.
,
2012
, “
Design Optimization of Piezoelectric Energy Harvester Subject to Tip Excitation
,”
J. Mech. Sci. Technol.
,
26
(
1
), pp.
137
143
.
19.
Dietl
,
J. M.
, and
Garcia
,
E.
,
2010
, “
Beam Shape Optimization for Power Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
6
), pp.
633
646
.
20.
Yen
,
T. T.
,
Hirasawa
,
T.
,
Wright
,
P. K.
,
Pisano
,
A. P.
, and
Lin
,
L. W.
,
2011
, “
Corrugated Aluminum Nitride Energy Harvesters for High Energy Conversion Effectiveness
,”
J. Micromech. Microeng.
,
21
(
8
), p.
085037
.
21.
Cho
,
K.-H.
,
Park
,
H.-Y.
,
Heo
,
J. S.
, and
Priya
,
S.
,
2014
, “
Structure–Performance Relationships for Cantilever-Type Piezoelectric Energy Harvesters
,”
J. Appl. Phys.
,
115
(
20
), p.
204108
.
22.
Huang
,
K. X.
,
Zhang
,
H.
,
Jiang
,
J. Q.
,
Zhang
,
Y. Y.
,
Zhou
,
Y. H.
,
Sun
,
L. F.
, and
Zhang
,
Y. N.
,
2022
, “
The Optimal Design of a Piezoelectric Energy Harvester for Smart Pavements
,”
Int. J. Mech. Sci.
,
232
, p.
107609
.
23.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
24.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Meth. Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
25.
Suzuki
,
K.
, and
Kikuchi
,
N.
,
1991
, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
93
(
3
), pp.
291
318
.
26.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.
27.
Wang
,
M. Y.
,
Wang
,
X. M.
, and
Guo
,
D. M.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
28.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
29.
Huang
,
X.
, and
Xie
,
Y. M.
,
2007
, “
Convergent and Mesh-Independent Solutions for the Bi-Directional Evolutionary Structural Optimization Method
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1039
1049
.
30.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhong
,
W. L.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically-A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
31.
Zhang
,
W. S.
,
Yang
,
W. Y.
,
Zhou
,
J. H.
,
Li
,
D.
, and
Guo
,
X.
,
2017
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011011
.
32.
Seo
,
Y.-D.
,
Kim
,
H.-J.
, and
Youn
,
S.-K.
,
2010
, “
Isogeometric Topology Optimization Using Trimmed Spline Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
49–52
), pp.
3270
3296
.
33.
Seo
,
Y.-D.
,
Kim
,
H.-J.
, and
Youn
,
S.-K.
,
2010
, “
Shape Optimization and Its Extension to Topological Design Based on Isogeometric Analysis
,”
Int. J. Solids Struct.
,
47
(
11–12
), pp.
1618
1640
.
34.
Kang
,
P.
, and
Youn
,
S.-K.
,
2016
, “
Isogeometric Topology Optimization of Shell Structures Using Trimmed NURBS Surfaces
,”
Finite Elem. Anal. Des.
,
120
, pp.
18
40
.
35.
Zhuang
,
Z. C.
,
Weng
,
Y. W.
,
Xie
,
Y. M.
,
Wang
,
C.
,
Zhang
,
X. Y.
, and
Zhou
,
S. W.
,
2024
, “
A Node Moving-Based Structural Topology Optimization Method in the Body-Fitted Mesh
,”
Comput. Meth. Appl. Mech. Eng.
,
419
, p.
116663
.
36.
Zhang
,
W. H.
,
Zhao
,
L. Y.
,
Gao
,
T.
, and
Cai
,
S. Y.
,
2017
, “
Topology Optimization With Closed B-Splines and Boolean Operations
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
652
670
.
37.
Silva
,
E. C. N.
,
Fonseca
,
J. S. O.
, and
Kikuchi
,
N.
,
1997
, “
Optimal Design of Piezoelectric Microstructures
,”
Comput. Mech.
,
19
(
5
), pp.
397
410
.
38.
Silva
,
E. C. N.
, and
Kikuchi
,
N.
,
1999
, “
Design of Piezocomposite Materials and Piezoelectric Transducers Using Topology Optimization—Part III
,”
Arch. Comput. Meth. Eng.
,
6
(
4
), pp.
305
329
.
39.
Silva
,
E. C. N.
, and
Kikuchi
,
N.
,
1999
, “
Design of Piezoelectric Transducers Using Topology Optimization
,”
Smart Mater. Struct.
,
8
(
3
), pp.
350
364
.
40.
Kögl
,
M.
, and
Silva
,
E. C. N.
,
2005
, “
Topology Optimization of Smart Structures: Design of Piezoelectric Plate and Shell Actuators
,”
Smart Mater. Struct.
,
14
(
2
), pp.
387
399
.
41.
Kim
,
J. E.
,
Kim
,
D. S.
,
Ma
,
P. S.
, and
Kim
,
Y. Y.
,
2010
, “
Multi-physics Interpolation for the Topology Optimization of Piezoelectric Systems
,”
Comput. Meth. Appl. Mech. Eng.
,
199
(
49–52
), pp.
3153
3168
.
42.
Zheng
,
B.
,
Chang
,
C.-J.
, and
Gea
,
H. C.
,
2008
, “
Topology Optimization of Energy Harvesting Devices Using Piezoelectric Materials
,”
Struct. Multidiscip. Optim.
,
38
(
1
), pp.
17
23
.
43.
Rupp
,
C. J.
,
Evgrafov
,
A.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2009
, “
Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells
,”
J. Intell. Mater. Syst. Struct.
,
20
(
16
), pp.
1923
1939
.
44.
Noh
,
J. Y.
, and
Yoon
,
G. H.
,
2012
, “
Topology Optimization of Piezoelectric Energy Harvesting Devices Considering Static and Harmonic Dynamic Loads
,”
Adv. Eng. Softw.
,
53
, pp.
45
60
.
45.
Salas
,
R. A.
,
Ramírez
,
F. J.
,
Montealegre-Rubio
,
W.
,
Silva
,
E. C. N.
, and
Reddy
,
J. N.
,
2017
, “
A Topology Optimization Formulation for Transient Design of Multi-entry Laminated Piezocomposite Energy Harvesting Devices Coupled With Electrical Circuit
,”
Int. J. Numer. Methods Eng.
,
113
(
8
), pp.
1370
1410
.
46.
He
,
M.
,
Zhang
,
X. P.
,
dos Santos Fernandez
,
L.
,
Molter
,
A.
,
Xia
,
L.
, and
Shi
,
T. L.
,
2021
, “
Multi-material Topology Optimization of Piezoelectric Composite Structures for Energy Harvesting
,”
Compos. Struct.
,
265
, p.
113783
.
47.
de Almeida
,
B. V.
,
Cunha
,
D. C.
, and
Pavanello
,
R.
,
2019
, “
Topology Optimization of Bimorph Piezoelectric Energy Harvesters Considering Variable Electrode Location
,”
Smart Mater. Struct.
,
28
(
8
), p.
085030
.
48.
Chen
,
S. K.
,
Gonella
,
S.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2010
, “
A Level Set Approach for Optimal Design of Smart Energy Harvesters
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
37–40
), pp.
2532
2543
.
49.
Cao
,
Y. J.
, and
Huang
,
H. W.
,
2023
, “
Performance Optimization and Broadband Design of Piezoelectric Energy Harvesters Based on Isogeometric Topology Optimization Framework
,”
Eur. J. Mech. A. Solids
,
97
, p.
104800
.
50.
Fang
,
L. X.
,
Meng
,
Z.
,
Zhou
,
H. L.
,
Wang
,
X.
, and
Guo
,
X.
,
2023
, “
Topology Optimization of Piezoelectric Actuators Using Moving Morphable Void Method
,”
Struct. Multidiscip. Optim.
,
66
(
2
), p.
32
.
51.
Junior
,
C. D. M.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates
,”
J. Sound Vib.
,
327
(
1–2
), pp.
9
25
.
52.
Zhang
,
W. S.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2015
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
.
53.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
54.
Homayouni-Amlashi
,
A.
,
Schlinquer
,
T.
,
Mohand-Ousaid
,
A.
, and
Rakotondrabe
,
M.
,
2021
, “
2D Topology Optimization MATLAB Codes for Piezoelectric Actuators and Energy Harvesters
,”
Struct. Multidiscip. Optim.
,
63
(
2
), pp.
983
1014
.
You do not currently have access to this content.