Abstract

Designing guidance mechanisms using bistable mechanisms with two stable positions is a common low-power solution for maintaining the guidance position without continuous external energy input. However, the coupling between kinematics and statics in compliant bistable mechanisms poses a challenge for their application in mechanism synthesis. To address this issue, this paper introduces the pole similarity transformation theory into the synthesis of compliant mechanisms and proposes a general synthesis method for planar serial-based compliant bistable mechanisms. This method models the compliant mechanism using the strain energy method and analyzes the bistable characteristics of the mechanism within its motion plane using the saddle point searching method. By doing so, the proposed method can identify stable positions without predetermined motion trajectories, making it more suitable for designing compliant bistable mechanisms with general planar motion. Additionally, this method utilizes the pole map to describe the stable positions of the rigid components in the compliant mechanism and establishes an information database for compliant bistable mechanisms. Through leveraging the pole similarity transformation, the pole maps of the mechanisms in the information database are matched with the pole map of the motion task, thus achieving the synthesis of planar serial-based compliant bistable mechanisms for the rigid-body guidance problem. The paper provides a detailed explanation of the mechanism synthesis process and demonstrates its application through a case study.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
2.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
3.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
4.
Sönmez
,
U.
, and
Tutum
,
C. C.
,
2008
, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042304
.
5.
Zhao
,
J.
,
Jia
,
J.
,
He
,
X.
, and
Wang
,
H.
,
2008
, “
Post-Buckling and Snap-tThrough Behavior of Inclined Slender Beams
,”
ASME J. Appl. Mech.
,
75
(
4
), p.
041020
.
6.
Qiu
,
J.
,
Lang
,
J.
, and
Slocum
,
A.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
7.
Hussein
,
H.
,
Le Moal
,
P.
,
Younes
,
R.
,
Bourbon
,
G.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2019
, “
On the Design of a Preshaped Curved Beam Bistable Mechanism
,”
Mech. Mach. Theory
,
131
, pp.
204
217
.
8.
Parkinson
,
M. B.
,
Jensen
,
B. D.
, and
Roach
,
G. M.
,
2000
, “
Optimization-Based Design of a Fully-Compliant Bistable Micromechanism
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Baltimore, MD
,
Sept. 10–13
.
9.
Gao
,
R.
,
Li
,
M.
,
Wang
,
Q.
,
Zhao
,
J.
, and
Liu
,
S.
,
2018
, “
A Novel Design Method of Bistable Structures With Required Snap-Through Properties
,”
Sens. Actuat. A
,
272
, pp.
295
300
.
10.
Todd
,
B.
,
Jensen
,
B. D.
,
Schultz
,
S. M.
, and
Hawkins
,
A. R.
,
2010
, “
Design and Testing of a Thin-Flexure Bistable Mechanism Suitable for Stamping From Metal Sheets
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071011
.
11.
Tran
,
N. D. K.
, and
Wang
,
D. -A.
,
2017
, “
Design of a Crab-Like Bistable Mechanism for Nearly Equal Switching Forces in Forward and Backward Directions
,”
Mech. Mach. Theory
,
115
, pp.
114
129
.
12.
Haddab
,
Y.
,
Aiche
,
G.
,
Hussein
,
H.
,
Salem
,
M. B.
,
Lutz
,
P.
,
Rubbert
,
L.
, and
Renaud
,
P.
,
2018
, “
Mechanical Bistable Structures for Microrobotics and Mesorobotics From Microfabrication to Additive Manufacturing
,”
2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)
,
Nagoya, Japan
,
July 4–8
.
13.
Nathan
,
D.
, and
Howell
,
L.
,
2003
, “
A Self-retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
(
3
), pp.
273
280
.
14.
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2005
, “
Double-Tensural Bistable Mechanisms (DTBM) With On-Chip Actuation and Spring-Like Post-Bistable Behavior
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
.
15.
Wilcox
,
D.
, and
Howell
,
L.
,
2005
, “
Fully Compliant Tensural Bistable Micromechanisms (FTBM)
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1223
1235
.
16.
Han
,
Q.
,
Jin
,
K.
,
Chen
,
G.
, and
Shao
,
X.
,
2017
, “
A Novel Fully Compliant Tensural-compresural Bistable Mechanism
,”
Sens. Actuat. A
,
268
, pp.
72
82
.
17.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
,
1999
, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
416
423
.
18.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
701
708
.
19.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
657
666
.
20.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.
21.
Sarojini
,
D.
,
Lassche
,
T.
,
Herder
,
J.
, and
Ananthasuresh
,
G.
,
2016
, “
Statically Balanced Compliant Two-Port Bistable Mechanism
,”
Mech. Mach. Theory
,
102
, pp.
1
13
.
22.
Zhang
,
H.
,
Zhu
,
B.
, and
Zhang
,
X.
,
2018
, “
Origami Kaleidocycle-Inspired Symmetric Multistable Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011009
.
23.
Pehrson
,
N. A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
An Origami-Based Thickness-Accommodating Bistable Mechanism in Monolithic Thick-sheet Materials
,”
2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands
,
June 20–22
.
24.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Constant-Force Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory
,
46
(
7
), pp.
899
909
.
25.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2018
, “
Design of Buckling-Induced Mechanical Metamaterials for Energy Absorption Using Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
58
(
4
), pp.
1395
1410
.
26.
James
,
K. A.
, and
Waisman
,
H.
,
2016
, “
Layout Design of a Bi-Stable Cardiovascular Stent Using Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
869
890
.
27.
Lindgaard
,
E.
, and
Dahl
,
J.
,
2013
, “
On Compliance and Buckling Objective Functions in Topology Optimization of Snap-Through Problems
,”
Struct. Multidiscipl. Optim.
,
47
(
3
), pp.
409
421
.
28.
Bridgman
,
P. W.
,
1922
,
Dimensional Analysis
,
Yale University Press
,
New Haven, CT
.
29.
Betts
,
J. T.
,
2010
, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Society for Industrial and Applied Mathematics.
30.
Yin
,
J.
,
Huang
,
Z.
, and
Zhang
,
L.
,
2022
, “
Constrained High-Index Saddle Dynamics for the Solution Landscape With Equality Constraints
,”
J. Sci. Comput.
,
91
(
2
), p.
62
.
31.
Adler
,
R. L.
,
Dedieu
,
J.
,
Margulies
,
J. Y.
,
Martens
,
M.
, and
Shub
,
M.
,
2002
, “
Newton’s Method on Riemannian Manifolds and a Geometric Model for the Human Spine
,”
IMA J. Numer. Anal.
,
22
(
3
), pp.
359
390
.
You do not currently have access to this content.