Abstract

Failure probability function (FPF) is an important index that reflects the influence of designable distribution parameters on the safety degree of a structure, and it can be used for decoupling reliability optimization models. Thus, its efficient solution is expected. A decoupling algorithm based on statistical moment functions (SMFs) of performance function is proposed to solve the FPF efficiently in this paper. The proposed algorithm first constructs an extended density weight function (EDWF), which can cover the interested region of the distribution parameters and is independent of the distribution parameters so that the statistical moment integrals corresponding to different realizations of the distribution parameters can share the same EDWF. Then, using the same EDWF, a strategy is dexterously designed to estimate the SMFs by sharing a set of integral characteristic nodes. Finally, the FPF is approximated by the SMFs, which varies with the distribution parameters in the interested design region. In addition, the proposed algorithm introduces the Box–Cox transformation of the performance function to guide the high accuracy of FPF approximated by the SMFs. The main contribution of the proposed algorithm is constructing the EDWF to decouple the dependence of solving SMFs on the realizations of the distribution parameters over the interested region and designing the strategy of estimating the SMFs by sharing the same integral characteristic nodes. Since the proposed algorithm employs a point estimation method to evaluate the FPF, it has higher efficiency than the competitive methods. Numerical and engineering examples demonstrate the superiority of the proposed algorithm.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Feng
,
K. X.
,
Lu
,
Z. Z.
,
Ling
,
C. Y.
, and
Yun
,
W. Y.
,
2019
, “
An Innovative Estimation of Failure Probability Function Based on Conditional Probability of Parameter Interval and Augmented Failure Probability
,”
Mech. Syst. Signal Process.
,
123
, pp.
606
625
.
2.
Ling
,
C.
,
Lu
,
Z.
, and
Zhang
,
X.
,
2020
, “
An Efficient Method Based on AK-MCS for Estimating Failure Probability Function
,”
Reliab. Eng. Syst. Saf.
,
201
, p.
106975
.
3.
Yuan
,
X.
,
Liu
,
S.
,
Valdebenito
,
M. A.
,
Gu
,
J.
, and
Beer
,
M.
,
2021
, “
Efficient Procedure for Failure Probability Function Estimation in Augmented Space
,”
Struct. Saf.
,
92
, p.
102104
.
4.
Huang
,
X. Z.
, and
Zhang
,
Y. M.
,
2013
, “
Reliability-Sensitivity Analysis Using Dimension Reduction Methods and Saddlepoint Approximations
,”
Int. J. Numer. Methods Eng.
,
93
(
8
), pp.
857
886
.
5.
Shi
,
Y.
,
Lu
,
Z. Z.
,
Chen
,
S. Y.
, and
Xu
,
L. Y.
,
2018
, “
A Reliability Analysis Method Based on Analytical Expressions of the First Four Moments of the Surrogate Model of the Performance Function
,”
Mech. Syst. Signal Process.
,
111
, pp.
47
67
.
6.
He
,
S.
,
Xu
,
J.
, and
Zhang
,
Y.
,
2022
, “
Reliability Computation via a Transformed Mixed-Degree Cubature Rule and Maximum Entropy
,”
Appl. Math. Model.
,
104
, pp.
122
139
.
7.
Park
,
J. W.
, and
Lee
,
I.
,
2023
, “
A New Framework for Efficient Sequential Sampling-Based RBDO Using Space Mapping
,”
ASME J. Mech. Des.
,
145
(
3
), p.
031702
.
8.
Zhao
,
Z.
,
Zhao
,
Y.-G.
, and
Li
,
P.-P.
,
2023
, “
A Novel Decoupled Time-Variant Reliability-Based Design Optimization Approach by Improved Extreme Value Moment Method
,”
Reliab. Eng. Syst. Saf.
,
229
, p.
108825
.
9.
Wang
,
Y. T.
,
Hao
,
P.
,
Guo
,
Z. D.
,
Liu
,
D. C.
, and
Gao
,
Q.
,
2020
, “
Reliability-Based Design Optimization of Complex Problems With Multiple Design Points via Narrowed Search Region
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061702
.
10.
Chen
,
Z. Z.
,
Qiu
,
H. B.
,
Gao
,
L.
,
Su
,
L.
, and
Li
,
P. G.
,
2013
, “
An Adaptive Decoupling Approach for Reliability-Based Design Optimization
,”
Comput. Struct.
,
117
, pp.
58
66
.
11.
Yuan
,
X. K.
,
2013
, “
Local Estimation of Failure Probability Function by Weighted Approach
,”
Probabilistic Eng. Mech.
,
34
, pp.
1
11
.
12.
Jensen
,
H. A.
,
2005
, “
Structural Optimization of Linear Dynamical Systems Under Stochastic Excitation: A Moving Reliability Database Approach
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp.
1757
1778
.
13.
Xiukai
,
Y.
,
Zhenxuan
,
Z.
, and
Baoqiang
,
Z.
,
2020
, “
Augmented Line Sampling for Approximation of Failure Probability Function in Reliability-Based Analysis
,”
Appl. Math. Model.
,
80
, pp.
895
910
.
14.
Gasser
,
M.
, and
Schueller
,
G. I.
,
1997
, “
Reliability-Based Optimization of Structural Systems
,”
Math. Methods Operat. Res.
,
46
(
3
), pp.
287
307
.
15.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
16.
Hong
,
L.
,
Shang
,
B.
,
Li
,
S.
,
Li
,
H.
, and
Cheng
,
J.
,
2023
, “
Portfolio Allocation Strategy for Active Learning Kriging-Based Structural Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
412
, p.
116066
.
17.
Au
,
S. K.
,
2005
, “
Reliability-Based Design Sensitivity by Efficient Simulation
,”
Comput. Struct.
,
83
(
14
), pp.
1048
1061
.
18.
Ching
,
J. Y.
, and
Hsieh
,
Y. H.
,
2007
, “
Local Estimation of Failure Probability Function and Its Confidence Interval With Maximum Entropy Principle
,”
Probabilistic Eng. Mech.
,
22
(
1
), pp.
39
49
.
19.
Zhang
,
X. F.
, and
Pandey
,
M. D.
,
2013
, “
Structural Reliability Analysis Based on the Concepts of Entropy, Fractional Moment and Dimensional Reduction Method
,”
Struct. Saf.
,
43
, pp.
28
40
.
20.
Scott
,
D. W.
,
2010
, “
Histogram
,”
Wiley Interdiscipl. Rev.: Comput. Statistics
,
2
(
1
), pp.
44
48
.
21.
Park
,
B. U.
, and
Marron
,
J. S.
,
1990
, “
Comparison of Data-Driven Bandwidth Selectors
,”
J. Am. Stat. Assoc.
,
85
(
409
), pp.
66
72
.
22.
Dai
,
H. Z.
,
Zhang
,
H.
, and
Wang
,
W.
,
2012
, “
A Support Vector Density-Based Importance Sampling for Reliability Assessment
,”
Reliab. Eng. Syst. Saf.
,
106
, pp.
86
93
.
23.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
24.
Zhang
,
D.
,
Shen
,
S.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2022
, “
An Advanced Mixed-Degree Cubature Formula for Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
400
, p.
115521
.
25.
Box
,
G. E. P.
, and
Cox
,
D. R.
,
1964
, “
An Analysis of Transformations
,”
J. R. Stat. Soc.: Ser. B Methodol.
,
26
(
2
), pp.
211
243
.
26.
Cai
,
C.-H.
,
Lu
,
Z.-H.
, and
Zhao
,
Y.-G.
,
2020
, “
Moment Method With Box-Cox Transformation for Structural Reliability
,”
J. Eng. Mech.
,
146
(
8
), p.
04020086
.
27.
Zhao
,
Y. G.
, and
Ono
,
T.
,
2001
, “
Moment Methods for Structural Reliability
,”
Struct. Saf.
,
23
(
1
), pp.
47
75
.
28.
Mirjalili
,
S.
,
2018
, “
Genetic Algorithm
,”
Evol. Algorith. Neural Networks: Theory Appl.
,
780
, pp.
43
55
.
29.
Jia
,
B.
,
Xin
,
M.
, and
Cheng
,
Y.
,
2013
, “
High-Degree Cubature Kalman Filter
,”
Automatica
,
49
(
2
), pp.
510
518
.
30.
Meng
,
D.
,
Miao
,
L. J.
,
Shao
,
H. J.
, and
Shen
,
J.
,
2018
, “
A Seventh-Degree Cubature Kalman Filter
,”
Asian J. Control
,
20
(
1
), pp.
250
262
.
31.
Arasaratnam
,
I.
, and
Haykin
,
S.
,
2009
, “
Cubature Kalman Filters
,”
IEEE Trans. Automat. Contr.
,
54
(
6
), pp.
1254
1269
.
32.
Dang
,
C.
,
Wei
,
P. F.
,
Song
,
J. W.
, and
Beer
,
M.
,
2021
, “
Estimation of Failure Probability Function Under Imprecise Probabilities by Active Learning–Augmented Probabilistic Integration
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civil Eng.
,
7
(
4
), p.
04021054
.
You do not currently have access to this content.