Abstract

The first-order reliability method (FORM) is simple and efficient for solving structural reliability problems but may have large errors and converge slowly or even result in divergence when dealing with strongly nonlinear performance functions. For this case, the existing second-order reliability method (SORM) achieves higher computational accuracy but with a consequent decrease in efficiency. To achieve a better balance between accuracy and efficiency, this paper proposes an improved FORM and an improved SORM. First, an improved modified symmetric rank 1 (IMSR1) algorithm, in which the line search strategy for step length is unnecessary, is proposed for iterations of the FORM, and an adaptive Kriging model with a rational update criterion is presented to improve the efficiency of the FORM. Then, an improved FORM with high efficiency and good convergence is proposed. Second, due to the good precision of the adaptive Kriging model at the final design point, the Hessian matrix is available easily without additional computational effort, and an improved SORM with the same efficiency as the improved FORM is presented naturally. Finally, the accuracy, efficiency, and convergence of the proposed methods are verified by numerical and engineering examples.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Ang
,
A. H. S.
, and
Cornell
,
C. A.
,
1974
, “
Reliability Bases of Structural Safety and Design
,”
J. Struct. Div.
,
100
(
ST9
), pp.
1755
1769
.
2.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. Div.
,
100
(
1
), pp.
111
121
.
3.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2001
, “
Design Potential Method for Robust System Parameter Design
,”
AIAA J.
,
39
(
4
), pp.
667
677
.
4.
Rackwitz
,
R.
, and
Fiessler
,
B.
,
1978
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
(
5
), pp.
489
494
.
5.
Santos
,
S. R.
,
Matioli
,
L. C.
, and
Beck
,
A. T.
,
2012
, “
New Optimization Algorithms for Structural Reliability Analysis
,”
Comput. Model. Eng. Sci.
,
83
(
1
), pp.
23
55
.
6.
Zhao
,
W.
,
Chen
,
Y.
, and
Liu
,
J.
,
2020
, “
An Effective First Order Reliability Method Based on Barzilai–Borwein Step
,”
Appl. Math. Model.
,
77
(
2
), pp.
1545
1563
.
7.
Li
,
G.
,
Li
,
B.
, and
Hu
,
H.
,
2018
, “
A Novel First–Order Reliability Method Based on Performance Measure Approach for Highly Nonlinear Problems
,”
Struct. Multidiscipl. Optim.
,
57
(
4
), pp.
1593
1610
.
8.
Meng
,
Z.
,
Pu
,
Y.
, and
Zhou
,
H.
,
2018
, “
Adaptive Stability Transformation Method of Chaos Control for First Order Reliability Method
,”
Eng. Comput.
,
34
(
4
), pp.
671
683
.
9.
Zhang
,
Y. W.
,
Gong
,
C. L.
, and
Li
,
C. N.
,
2021
, “
Efficient Time-Variant Reliability Analysis Through Approximating the Most Probable Point Trajectory
,”
Struct. Multidiscipl. Optim.
,
63
(
1
), pp.
289
309
.
10.
Breitung
,
K.
,
1984
, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
,
110
(
3
), pp.
357
366
.
11.
Zhang
,
J.
, and
Du
,
X. P.
,
2010
, “
A Second-Order Reliability Method With First-Order Efficiency
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101006
.
12.
Tvedt
,
L.
,
1990
, “
Distribution of Quadratic Forms in Normal Space-Application to Structural Reliability
,”
J. Eng. Mech.
,
116
(
6
), pp.
1183
1197
.
13.
Zeng
,
P.
,
Jimenez
,
R.
, and
Li
,
T.
,
2016
, “
An Efficient Quasi-Newton Approximation-Based SORM to Estimate the Reliability of Geotechnical Problems
,”
Comput. Geotech.
,
76
, pp.
33
42
.
14.
Lee
,
I.
,
Yoo
,
D.
, and
Noh
,
Y.
,
2012
, “
A Novel Second-Order Reliability Method (SORM) Using Non-Central or Generalized Chi-Squared Distributions
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100912
.
15.
Park
,
J. W.
, and
Lee
,
I.
,
2018
, “
A Study on Computational Efficiency Improvement of Novel SORM Using the Convolution Integration
,”
ASME J. Mech. Des.
,
140
(
2
), p.
024501
.
16.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2014
, “
Second-Order Reliability Method-Based Inverse Reliability Analysis Using Hessian Update for Accurate and Efficient Reliability-Based Design Optimization
,”
Int. J. Numer. Methods Eng.
,
100
(
10
), pp.
773
792
.
17.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2016
, “
Post Optimization for Accurate and Efficient Reliability-Based Design Optimization Using Second-Order Reliability Method Based on Importance Sampling and Its Stochastic Sensitivity Analysis
,”
Int. J. Numer. Methods Eng.
,
107
(
2
), pp.
93
108
.
18.
Kang
,
S. B.
,
Park
,
J. W.
, and
Lee
,
I.
,
2017
, “
Accuracy Improvement of the Most Probable Point-Based Dimension Reduction Method Using the Hessian Matrix
,”
Int. J. Numer. Methods Eng.
,
111
(
3
), pp.
203
217
.
19.
Wu
,
H.
,
Hu
,
Z. L.
, and
Du
,
X. P.
,
2021
, “
Time-Dependent System Reliability Analysis With Second-Order Reliability Method
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031101
.
20.
Wu
,
H.
, and
Du
,
X. P.
,
2020
, “
System Reliability Analysis With Second-Order Saddlepoint Approximation
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. B Mech. Eng.
,
6
(
4
), p.
041001
.
21.
Zhao
,
Y. G.
, and
Ono
,
T.
,
2000
, “
New Point Estimates for Probability Moments
,”
J. Eng. Mech.
,
126
(
4
), pp.
433
436
.
22.
Zhao
,
Y. G.
, and
Lu
,
Z. H.
,
2007
, “
Applicable Range of the Fourth-Moment Method for Structural Reliability
,”
J. Asian Archit. Build. Eng.
,
6
(
1
), pp.
151
158
.
23.
Zhang
,
T. X.
,
2017
, “
An Improved High-Moment Method for Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
56
(
6
), pp.
1225
1123
.
24.
Bucher
,
C. G.
, and
Bourgund
,
U.
,
1990
, “
A Fast and Efficient Response Surface Approach for Structural Reliability Problems
,”
Struct. Saf.
,
7
(
1
), pp.
57
66
.
25.
Kim
,
S. H.
, and
Na
,
S. W.
,
1997
, “
Response Surface Method Using Vector Projected Sampling Points
,”
Struct. Saf.
,
19
(
1
), pp.
3
19
.
26.
Kaymaz
,
I.
,
2005
, “
Application of Kriging Method to Structural Reliability Problems
,”
Struct. Saf.
,
27
(
2
), pp.
133
151
.
27.
Wang
,
Z. Y.
, and
Shafieezadeh
,
A.
,
2019
, “
REAK: Reliability Analysis Through Error Rate-Based Adaptive Kriging
,”
Reliab. Eng. Syst. Saf.
,
182
, pp.
33
45
.
28.
Melchers
,
R. E.
,
1990
, “
Radial Importance Sampling for Structural Reliability
,”
J. Eng. Mech.
,
116
(
1
), pp.
189
203
.
29.
Choi
,
B. S.
,
Scanlon
,
A.
, and
Johnson
,
P. A.
,
2004
, “
Monte Carlo Simulation of Immediate and Time-Dependent Deflections of Reinforced Concrete Beams and Slabs
,”
ACI Struct. J.
,
101
(
5
), pp.
633
641
.
30.
Van Huynh
,
T.
,
Tangaramvong
,
S.
,
Do
,
B.
,
Gao
,
W.
, and
Limkatanyu
,
S.
,
2023
, “
Sequential Most Probable Point Update Combining Gaussian Process and Comprehensive Learning PSO for Structural Reliability-Based Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
235
, p.
109164
.
31.
Liu
,
P. L.
, and
Der Kiureghian
,
A.
,
1991
, “
Optimization Algorithms for Structural Reliability
,”
Struct. Saf.
,
9
(
3
), pp.
161
177
.
32.
Zhang
Y.
,
Der Kiureghian
A.
,
1997
, “Finite Element Reliability Methods for Inelastic Structures. Report UCB/SEMM–97/05, Department of Civil and Environmental Engineering, University of California, Berkeley”.
33.
Keshtegar
,
B.
, and
Meng
,
Z.
,
2017
, “
A Hybrid Relaxed First-Order Reliability Method for Efficient Structural Reliability Analysis
,”
Struct. Saf.
,
66
, pp.
84
93
.
34.
Keshtegar
,
B.
, and
Chakraborty
,
S.
,
2018
, “
A Hybrid Self-Adaptive Conjugate First Order Reliability Method for Robust Structural Reliability Analysis
,”
Appl. Math. Model.
,
53
, pp.
319
332
.
35.
Meng
,
Z.
,
Li
,
G.
,
Wang
,
B. P.
, and
Hao
,
P.
,
2015
, “
A Hybrid Chaos Control Approach of the Performance Measure Functions for Reliability-Based Design Optimization
,”
Comput. Struct.
,
146
, pp.
32
43
.
36.
Meng
,
Z.
,
Li
,
G.
,
Yang
,
D.
, and
Zhan
,
L.
,
2017
, “
A new Directional Stability Transformation Method of Chaos Control for First Order Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
55
(
2
), pp.
601
612
.
37.
Breitung
,
K.
,
2015
, “
40 Years FORM: Some New Aspects?
,”
Probabilistic Eng. Mech.
,
42
, pp.
71
77
.
38.
Periçaro
,
G. A.
,
Santos
,
S. R.
,
Ribeiro
,
A. A.
, and
Matioli
,
L. C.
,
2015
, “
HLRF–BFGS Optimization Algorithm for Structural Reliability
,”
Appl. Math. Model.
,
39
(
7
), pp.
2025
2035
.
39.
Dehghani
,
R.
,
Hosseini
,
M. M.
, and
Bidabadi
,
N.
,
2019
, “
The Modified Quasi-Newton Methods for Solving Unconstrained Optimization Problems
,”
Int. J. Numer. Model.
,
32
(
1
), p.
e2459
.
40.
Wei
,
Z.
,
Li
,
G.
, and
Qi
,
L.
,
2006
, “
New Quasi-Newton Methods for Unconstrained Optimization Problems
,”
Appl. Math. Comput.
,
175
(
2
), pp.
1156
1188
.
41.
Wan
,
Z.
,
Teo
,
K. L.
,
Shen
,
X.
, and
Hu
,
C.
,
2014
, “
New BFGS Method for Unconstrained Optimization Problem Based on Modified Armijo Line Search
,”
Optimization
,
63
(
2
), pp.
285
304
.
42.
Conn
,
A. R.
,
Gould
,
N. I. M.
, and
Toint
,
P. L.
,
1991
, “
Convergence of Quasi-Newton Matrices Generated by the Symmetric Rank One Update
,”
Math. Program.
,
50
(
2
), pp.
177
195
.
43.
Modarres
,
F.
,
Malik
,
A. H.
, and
Leong
,
W. J.
,
2011
, “
Improved Hessian Approximation With Modified Secant Equations for Symmetric Rank-One Method
,”
J. Comput. Appl. Math.
,
235
(
8
), pp.
2423
2431
.
44.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
45.
Liu
,
P.
, and
Der Kiureghian
,
A.
,
1986
, “
Multivariate Distribution Models With Prescribed Marginals and Covariances
,”
Probabilistic Eng. Mech.
,
1
(
2
), pp.
105
112
.
46.
Byrd
,
R. H.
,
Tapia
,
R. A.
, and
Zhang
,
Y.
,
1992
, “
An SQP Augmented Lagrangian BFGS Algorithm for Constrained Optimization
,”
SIAM J. Opt.
,
2
(
2
), pp.
210
241
.
47.
Barbato
,
M.
,
Gu
,
Q.
, and
Conte
,
J.
,
2010
, “
New Multidimensional Visualization Technique Forlimit-State Surfaces in Nonlinear Finite-Element Reliability Analysis
,”
J. Eng. Mech.
,
136
(
11
), pp.
1390
1400
.
48.
Haftka
,
R. T.
, and
Adelman
,
H. M.
,
1989
, “
Recent Developments in Structural Sensitivity Analysis
,”
Struct. Opt.
,
1
(
3
), pp.
137
151
.
49.
Zhou
,
D. C.
,
Duan
,
Z. D.
, and
Ou
,
J. P.
,
2005
, “
Improved Moment Method for Reliability Index Without Explicit Performance Function
,”
J. Southeast Univ.
,
35
(
A01
), pp.
139
143
. (in Chinese).
50.
Wen
,
Z.
,
Pei
,
H.
,
Liu
,
H.
, and
Yue
,
Z.
,
2016
, “
A Sequential Kriging Reliability Analysis Method With Characteristics of Adaptive Sampling Regions and Parallelizability
,”
Reliab. Eng. Syst. Saf.
,
153
, pp.
170
179
.
51.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
,
A MATLAB Kriging Toolbox
,
Informatics and Mathematical Modelling, Technical University of Denmark, DTU
,
Lyngby, Denmark
.
52.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
,
Aspects of the MATLAB Toolbox DAC
,
Informatics and Mathematical Modelling, Technical University of Denmark, DTU
,
Lyngby, Denmark
..
53.
Arabaninezhad
,
A.
, and
Fakher
,
A.
,
2021
, “
A Practical Method for Rapid Assessment of Reliability in Deep Excavation Projects
,”
Iran. J. Sci. Technol. Trans. Civil Eng.
,
45
(
1
), pp.
335
357
.
54.
Gayton
,
N.
,
Lemaire
,
M.
, and
Echard
,
B.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
55.
Adhikari
,
S.
,
2004
, “
Reliability Analysis Using Parabolic Failure Surface Approximation
,”
J. Eng. Mech.
,
130
(
12
), pp.
1407
1427
.
56.
Der Kiureghian
,
A.
,
Lin
,
H.
, and
Hwang
,
S.
,
1987
, “
Second-Order Reliability Approximations
,”
J. Eng. Mech.
,
113
(
8
), pp.
1208
1225
.
57.
Santosh
,
T. V.
,
Saraf
,
R. K.
,
Ghosh
,
A. K.
, and
Kushwaha
,
H. S.
,
2006
, “
Optimum Step Length Selection Rule in Modified HL–RF Method for Structural Reliability
,”
Int. J. Press. Vessel. Pip.
,
83
(
10
), pp.
742
748
.
58.
Huang
,
X.
, and
Zhang
,
Y.
,
2013
, “
Reliability-sensitivity Analysis Using Dimension Reduction Methods and Saddlepoint Approximations
,”
Int. J. Numer. Methods Eng.
,
93
(
8
), pp.
857
886
.
59.
Guo
,
J.
, and
Du
,
X. P.
,
2009
, “
Reliability Sensitivity Analysis With Random and Interval Variables
,”
Int. J. Numer. Methods Eng.
,
78
(
13
), pp.
1585
1617
.
You do not currently have access to this content.